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Abstract
Minimizing resonance driving terms (RDTs) of nonlinear

magnets is a traditional approach to enlarge the dynamic
aperture (DA) of a storage ring. The local cancellation of
nonlinear dynamics, which is adopted by some diffraction-
limited storage rings, is more effective than the global can-
cellation. The former has smaller fluctuation of RDTs along
the ring. In this paper, the correlation between two kinds of
RDT fluctuations is found. The physical analysis shows that
minimizing the RDT fluctuations is beneficial for controlling
the crossing terms and thus enlarging the DA. This physical
analysis is supported by the statistical analysis of nonlinear
solutions of a double-bend achromat lattice.

INTRODUCTION
The widely-used analytical approach for the nonlinear op-

timization of storage rings is to minimize resonance driving
terms (RDTs) of nonlinear magnets. In this approach, the
Hamiltonian for particle motion is split into linear and non-
linear parts, and the nonlinear parts is expanded as the reso-
nance basis, i.e. RDTs [1]. Minimizing the RDTs can control
the corresponding resonance and thus enlarge the dynamic
aperture (DA). The local nonlinear cancellation, which is
used in the lattice design of some diffraction-limited storage
rings, is more effective than the global cancellation [2]. And
the former has smaller fluctuation of RDTs along the ring.
There are two ways to calculate the longitudinal fluctuation
of RDTs. One is to calculate the accumulated RDTs with
a fixed starting position, and the build-up and cancellation
of RDTs are shown in this way. We call it the RDT build-
up fluctuation. We have shown that minimizing the RDT
build-up fluctuations is more effective than minimizing the
commonly used one-turn RDTs in enlarging the DA [3]. The
other is to calculate the one-turn map (or one-period map)
with varying longitudinal starting position [4]. In this paper,
we will study the correlation between these two kinds of
RDT fluctuations. And then we will analyze the effects of
minimizing the RDT fluctuations.

RELATION BETWEEN TWO KINDS OF
RDT FLUCTUATIONS

For a storage ring lattice with 𝑁 sextupoles, the one-period
map observed at 𝑠0 is

M (𝑠0) = A−1
𝑠0 𝑒

:ℎ:RA𝑠0 , (1)
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where A𝑠0 is a normalizing map, R is a rotation, and 𝑒:ℎ: is
the nonlinear Lie map. For the on-momentum particles, the
𝑛-th order generator of 𝑒:ℎ: can be expanded as:

ℎ𝑛 =
∑︁

𝑗+𝑘+𝑙+𝑚=𝑛

ℎ 𝑗𝑘𝑙𝑚ℎ
+ 𝑗
𝑥 ℎ−𝑘𝑥 ℎ+𝑙𝑦 ℎ

−𝑚
𝑦 , (2)

where ℎ±𝑥 ≡
√

2𝐽𝑥𝑒±𝑖𝜙𝑥 , ℎ±𝑦 ≡
√︁

2𝐽𝑦𝑒±𝑖𝜙𝑦 , with (𝐽, 𝜙) being
action-angle variables, and ℎ 𝑗𝑘𝑙𝑚 is the driving terms. For
any thin sextupole 𝑎, its normalized Hamiltonian 𝑉̂𝑎 can be
expanded in the same way:

𝑉̂𝑎 =
∑︁

𝑗+𝑘+𝑙+𝑚=3
ℎ𝑎, 𝑗𝑘𝑙𝑚ℎ

+ 𝑗
𝑥 ℎ−𝑘𝑥 ℎ+𝑙𝑦 ℎ

−𝑚
𝑦 . (3)

For the third-order RDTs of one-period map, we have
ℎ 𝑗𝑘𝑙𝑚 =

∑𝑁
𝑎=1 ℎ𝑎, 𝑗𝑘𝑙𝑚. The build-up fluctuation

ℎ1→𝑡 , 𝑗𝑘𝑙𝑚 ≡ ∑𝑡
𝑎=1 ℎ𝑎, 𝑗𝑘𝑙𝑚 shows the accumulated RDTs

from 𝑠0 to the 𝑡-th sextupole.
For the case of multiple periods, the accumulated RDTs

from 𝑠0 to 𝑡-th sextupole in the (𝑢 + 1)-th period is:

𝑢𝑁+𝑡∑︁
𝑎=1

ℎ𝑎, 𝑗𝑘𝑙𝑚 =

𝑢𝑁∑︁
𝑎=1

ℎ𝑎, 𝑗𝑘𝑙𝑚 +
𝑢𝑁+𝑡∑︁

𝑎=𝑢𝑁+1
ℎ𝑎, 𝑗𝑘𝑙𝑚

=

𝑁∑︁
𝑎=1

ℎ𝑎, 𝑗𝑘𝑙𝑚
1 − 𝑒𝑖𝑢𝒎·𝝁

1 − 𝑒𝑖𝒎·𝝁 +
𝑡∑︁

𝑎=1
ℎ𝑎, 𝑗𝑘𝑙𝑚𝑒

𝑖𝑢𝒎·𝝁

=

∑𝑁
𝑎=1 ℎ𝑎, 𝑗𝑘𝑙𝑚

1 − 𝑒𝑖𝒎·𝝁 −
(∑𝑁

𝑎=1 ℎ𝑎, 𝑗𝑘𝑙𝑚

1 − 𝑒𝑖𝒎·𝝁 −
𝑡∑︁

𝑎=1
ℎ𝑎, 𝑗𝑘𝑙𝑚

)
𝑒𝑖𝑢𝒎·𝝁 ,

(4)

where 𝒎 = ( 𝑗 − 𝑘, 𝑙 − 𝑚) is the mode of resonance and
𝝁 = (𝜇𝑥 , 𝜇𝑦) is the phase advances of one period. The
third-order RDT build-up fluctuation can be written in the
form of 𝐶0,𝒎 +𝐶𝑡 ,𝒎𝑒

𝑖𝑢𝒎·𝝁 , which is a circle in the complex
plane when 𝑢 is a variable. And 𝐶𝑡 ,𝒎 is dependent on the
sextupole index 𝑡, so the build-up fluctuation of the RDT
ℎ 𝑗𝑘𝑙𝑚 is a series of concentric circles in the complex plane.

The second kind of RDT fluctuations shows the period
map observed at different longitudinal positions. And we
can measure it on a real machine. In order to measure the
RDTs, we need another transformation to find the nonlinear
invariants [4]:

𝑒:−𝐹:𝑒:ℎ:𝑅𝑒:𝐹: = 𝑒:H:R, (5)

where H is the phase-independent Hamiltonian in normal
forms, and 𝐹 is such a transformation. When the observation
position 𝑠 is between 𝑛-th and (𝑛 + 1)-th sextupole, the third
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Figure 1: Correlation between two kinds of RDT fluctu-
ations of the SSRF storage ring lattice. (a) The build-up
fluctuation of ℎ3000 in one SP. (b) The fluctuation of 𝑓3000 (𝑠)
in one SP. (c) The build-up fluctuation of ℎ3000 for 100 turns
in the complex plane. We calculate multiple turns in order
to make concentric circles visible. (d) The RDT 𝑓3000 (𝑠) in
the complex plane.

order terms in 𝐹 are:

𝑓 𝑗𝑘𝑙𝑚 (𝑠) =
∑𝑛+𝑁

𝑎=𝑛+1 ℎ𝑎, 𝑗𝑘𝑙𝑚𝑒
−𝑖𝒎·Δ𝝓

1 − 𝑒𝑖𝒎·𝝁

=

(∑𝑁
𝑎=1 −

∑𝑛
𝑎=1 +

∑𝑁+𝑛
𝑎=𝑁+1

)
ℎ𝑎, 𝑗𝑘𝑙𝑚𝑒

−𝑖𝒎·Δ𝝓

1 − 𝑒𝑖𝒎·𝝁

=

∑𝑁
𝑎=1 ℎ𝑎, 𝑗𝑘𝑙𝑚 − (1 − 𝑒𝑖𝒎·𝝁)∑𝑛

𝑎=1 ℎ𝑎, 𝑗𝑘𝑙𝑚

1 − 𝑒𝑖𝒎·𝝁 𝑒−𝑖𝒎·Δ𝝓 ,

(6)

where Δ𝝓 is the phase advances between the observation
position 𝑠 and 𝑠0. And we can see that | 𝑓 𝑗𝑘𝑙𝑚(𝑠) | equals to
|𝐶𝑡 ,𝒎 |. So these two kinds of RDT fluctuations are strongly
related.

Figure 1(a) and 1(b) show these two kinds of RDT fluctu-
ations for one super-period (SP) of the SSRF storage ring
lattice. The SSRF storage ring consists of 4 SPs, each with
5 double-bend achromat (DBA) cells [5]. The term ℎ3000
is almost cancelled after one SP. The term 𝐶0,𝒎 in Eq. (4)
is small and the two kinds of RDT fluctuations are almost
the same. Figure 1(c) shows the build-up fluctuation in the
complex plane. We calculate multiple turns in order to make

the concentric circles visible. These circles have the same
center 𝐶0,𝒎 and different radii |𝐶𝑡 ,𝒎 |. In Fig. 1(d), 𝑓 𝑗𝑘𝑙𝑚(𝑠)
is also plotted in the complex plane. And we can see that
they are on the circles with radii = |𝐶𝑡 ,𝒎 |. The fourth-order
cases are more complex, but the relation still exists. For a
fourth-order resonance 𝒎 = 𝒎1 +𝒎2, where 𝒎1 and 𝒎2 are
third-order resonances, the RDT build-up fluctuation has the
form of 𝐶0,𝒎 +𝐶𝑡 ,𝒎𝑒

𝑖𝒎·𝝁 +𝐶′
𝑡 ,𝒎1

𝑒𝑖𝒎1 ·𝝁 +𝐶′
𝑡 ,𝒎2

𝑒𝑖𝒎2 ·𝝁 , and
the fourth-order | 𝑓 𝑗𝑘𝑙𝑚(𝑠) | still equals to |𝐶𝑡 ,𝒎 |.

EFFECTS OF MINIMIZING RDT
FLUCTUATIONS

Physical Analysis
Since the RDTs are derived from the one-period map, it

seems the build-up and cancellation of RDTs in the period is
not important. For an ideal cancellation situation, e.g. two
identical thin sextupoles separated by −I transformation,
the nonlinear effects are completely cancelled. And the
fluctuation of RDTs, which is determined by the strength of
sextupoles, does not affect the cancellation. However, when
the thickness of sextupoles is considered, an "error map"
containing higher-order nonlinear terms appears. Reducing
the strength of sextupoles can control the error map as well as
the RDT fluctuations. The calculation of these two examples
can be found in Ref. [6] (pages 146-149).

We think the cross-talk effect of sextupoles is the key. The
perturbations of sextupoles drives fourth-order resonances
by the cross-talk effect:

ℎ4 =

𝑁∑︁
𝑏>𝑎=1

[
𝑉̂𝑎, 𝑉̂𝑏

]
=

𝑁∑︁
𝑏=2

[
𝑏−1∑︁
𝑎=1

𝑉̂𝑎, 𝑉̂𝑏

]
, (7)

and
∑𝑡

𝑏>𝑎=1
[
𝑉̂𝑎, 𝑉̂𝑏

]
shows the build-up fluctuations of

fourth-order RDTs. The third-order RDT build-up fluctua-
tions are involved in the calculation of fourth-order RDTs.
Minimizing RDT fluctuations is beneficial for controlling
the crossing terms and thus controlling the fourth-order res-
onances. Moreover, the cross-talk effect can also generate
the fifth- and higher-order RDTs. So minimizing the RDT
fluctuations is beneficial for controlling higher-order reso-
nances. And this is the physics why minimizing the RDT
fluctuations is more effective than minimizing the one-turn
RDTs in enlarging the DA.

Statistical Analysis
We will then use numerous nonlinear lattice solutions

to demonstrate this physical analysis. Some indicators
need to be defined. The RDT ℎ 𝑗𝑘𝑙𝑚 of the one-turn map
is denoted as ℎ 𝑗𝑘𝑙𝑚,ring. And when all the 𝑛-th order
one-turn RDTs are considered together, we have ℎ𝑛,ring =√︃∑

𝑗+𝑘+𝑙+𝑚=𝑛 ℎ
2
𝑗𝑘𝑙𝑚,ring. Since these two kinds of RDT

fluctuations are related by |𝐶𝑡 ,𝒎 |, we can use ℎ 𝑗𝑘𝑙𝑚,ave =∑𝑁
𝑡=1 |𝐶𝑡 ,𝒎 |/𝑁 to show the RDT fluctuations. And simi-

larly the 𝑛-th order RDT fluctuations is denoted as ℎ𝑛,ave =
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Figure 2: Correlation between the third-order RDT fluctu-
ations ℎ3,ave and the crossing terms. The ADTS terms, the
fourth-order one-turn RDTs ℎ4,ring and the fourth-order RDT
fluctuations ℎ4,ave are generated by the cross-talk effect of
sextupoles.

√︃∑
𝑗+𝑘+𝑙+𝑚=𝑛 ℎ

2
𝑗𝑘𝑙𝑚,ave. The correlation between these in-

dicators can be measured using the Spearman rank-order
correlation coefficient, which is a nonparametric measure of
the monotonicity of the relationship between two datasets [7].
Like other correlation coefficients, it varies between -1 and
+1 with 0 implying no correlation. Correlations of -1 or +1
imply an exact monotonic relationship.

The SSRF lattice is also taken as the example. The
strengths of sextupoles are changed to produce different non-
linear solutions, with the horizontal and vertical chromatic-
ities corrected to (1, 1). A set of nonlinear solutions were
generated randomly. Figure 2 shows the correlation between
the third-order RDT fluctuations and the crossing terms.
Both the fourth-order RDTs and the amplitude-dependent
tune shift (ADTS) terms are generated by the sextupole cross-
ing terms. We see that as the third-order RDT fluctuations
reduce, the ADTS terms, the fourth-order one-turn RDTs
and the fourth-order RDT fluctuations also roughly reduce.
The Spearman correlation coefficient between ℎ3,ave and
ℎ4,ring is 0.75, and it is 0.76 for ℎ3,ave and ℎ4,ave, and 0.82
for ℎ3,ave and ADTS terms. All indicate strong correlations.
Therefore, minimizing the RDT fluctuations can effectively
control the crossing terms.

Figure 3 shows the correlation between the third-order
one-turn RDTs ℎ3,ring, the third-order RDT fluctuations
ℎ3,ave and the DA area for a set of optimized nonlinear so-

Figure 3: Correlation between the third-order RDT fluctu-
ations ℎ3,ave, the third-order one-turn RDTs ℎ3,ring and the
DA area.

lutions. We see that the colors, which represent the DA
areas, are roughly horizontally layered, and the red dots with
large DAs sink to the bottom. This distribution indicates that
minimizing ℎ3,ave is more effective than minimizing ℎ3,ring
in enlarging the DA. The Spearman correlation coefficient
between ℎ3,ave and DA area is -0.87, indicating a very strong
correlation.

CONCLUSION
The local cancellation of nonlinear effects is more effec-

tive than the global cancellation. The former has smaller
longitudinal RDT fluctuations, which means minimizing
RDT fluctuation can be beneficial for enlarging the DA. The
relation between two kinds of longitudinal RDT fluctuations
was found in this paper. The physical analysis showed that
minimizing the RDT fluctuations is beneficial for controlling
the crossing terms, which drive the higher-order resonances
and ADTS. Therefore, minimizing RDT fluctuations is ben-
eficial for optimizing the nonlinear dynamics and enlarging
the DA. This physical analysis was demonstrated by the sta-
tistical analysis of nonlinear solutions of a DBA lattice. The
code for calculating the RDT fluctuations was shared on a
github page [8].
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