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Abstract

Solving Vlasov equation is a classic method for analyz-
ing collective beam instabilities. Considering longitudinal
impedance and the nonlinear longitudinal potential well,
we developed a new Vlasov solver which can be used to
study the transverse mode-coupling instability under the ar-
bitrary sub-optimal lengthening and the optimal lengthening
conditions in a double-RF system. Several different tech-
niques to deal with the radial direction of longitudinal phase
space have been tested. Numerical discretization method
is selected in this paper. The development of the solver is
presented in details here. Benchmarks and crosscheck of the
solver have been made and presented as well.

INTRODUCTION

Most (semi-)analytical Vlasov solvers are based on a sin-
gle RF cavity or do not contain synchrotron tune spread [1,2].
In 2014, A. Burov proposed the NHTVS (Nested Head-Tail
Vlasov Solver), which can contain small synchrotron tune
spread but it is based on Gaussian bunches [3]. In 2018, Ven-
turini proposed radial discretization which contains large
synchrotron tune spread and flat-top distribution, it is only
applicable for optimal lengthening. [4]. They may result in
significant errors under conditions where the longitudinal
distribution is completely different from Gaussian or the
synchrotron tune spread cannot be ignored. There is cur-
rently no general Vlasov solver for sub-optimal lengthening
conditions.

In this paper, we proposed a method to deal with arbitrary
sub-optimal lengthening bunch by discretization of Vlasov
equation. It is a general method to dominate Gaussian, sub-
optimal and optimal lengthening bunches.

At first, we will derivate Vlasov equation similar to
Ref. [5]. Then we choosed two typical cases and compared
our method with Chuntao Lin’s transfer matrix method [6].
The specific sampling process will be described in this sec-
tion.

∗ xujingye@ihep.ac.cn

FORMULA DERIVATION
The single-particle equations of motion are:

⎧{{{{{
⎨{{{{{⎩

̇𝑦(𝑠) =𝑝𝑦

̇𝑝𝑦(𝑠) = − (
𝜔𝛽
𝑐 )

2
𝑦 + 1

𝐸𝐹𝑦(𝑧, 𝑠)

̇𝑧(𝑠) = − 𝜂𝑝𝛿

̇𝛿(𝑠) =𝑒𝑉1
𝐸𝐶 𝒱(𝑧)

(1)

Here 𝐹𝑦 is transverse wake force, 𝐸 is particle energy, 𝜔𝛽 is
betatron frequency, 𝜂𝑝 is slippage factor, 𝐶 is circumference
of the storage ring, and 𝑉1𝒱(𝑧) is the voltage of double RF
system, where

𝒱(𝑧) = sin (𝜙𝑠 − 2ℎ1𝜋
𝐶 𝑧) − sin 𝜙𝑠

+ 𝑟 sin [𝜙2𝑠 − 2ℎ1ℎ𝜋
𝐶 𝑧] − 𝑟 sin 𝜙2𝑠.

(2)

We use action-angle variables 𝐽, 𝜙 in the longitudi-
nal phase space and polar coordinates 𝑞, 𝜃 in the trans-
verse. So the perturbation formalism of density distribution
𝜓(𝐽, 𝜙, 𝑞, 𝜃; 𝑠) can be written as

𝜓 = 𝑓0(𝑞)𝑔0(𝐽) + 𝑓1(𝑞, 𝜃)𝑔1(𝐽, 𝜙)𝑒−𝑖Ω𝑠/𝑐.

Substitute 𝜓, Eqs. (6.168) and (6.173) in Ref. [5] into the
Vlasov equation,

𝑖(Ω − 𝜔𝛽)𝑔1 = 𝑐𝑒2

2𝐸𝜔𝛽𝑇2
0

𝑔0 ∑
𝑝

̃𝜌1(𝜔′)𝑍⟂
1 (𝜔′)𝑒𝑖𝜔′𝑧/𝑐

+ 𝐵(𝐽, 𝜙) [𝜕𝑔1
𝜕𝐽 − 1

𝐷
𝑓0
𝑓 ′
0

𝜕𝑔0
𝜕𝐽 𝑒𝑖Ω𝑠/𝑐−𝑖𝜃] + 𝐶(𝐽, 𝜙)𝜕𝑔1

𝜕𝜙 ,

(3)
here

𝐵(𝐽, 𝜙) = ̇𝛿(𝑧) 𝜕𝐽
𝜕𝛿 ∣

𝑧
+ ̇𝑧(𝑡)𝜕𝐽

𝜕𝑧 ∣
𝛿

= 𝑑 ⃗𝑟(𝑡)
𝑑𝑡 ⋅ ∇𝐽 = 𝑑𝐽

𝑑𝑡 = 0,

𝐶(𝐽, 𝜙) = ̇𝛿(𝑧)𝜕𝜙
𝜕𝛿 ∣

𝑧
+ ̇𝑧(𝑡)𝜕𝜙

𝜕𝑧 ∣
𝛿

= 𝑑 ⃗𝑟(𝑡)
𝑑𝑡 ⋅ ∇𝜙 = 𝜔𝑠(𝐽).

(4)
Here ⃗𝑟 is the vector from the original point to the particle
coordinate (𝑧, 𝛿) in the longitudinal phase space. By the
same manipulation of Fourier expansion of 𝑔1 in Ref. [5],
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we finally get

(Ω(𝑙) − 𝜔𝛽)𝑅𝑙(𝐽)

=𝑔0(𝐽) ∑
𝑙′

∫
∞

0
𝑑𝐽′ 𝑅𝑙′(𝐽′)𝐺𝑙,𝑙′(𝐽, 𝐽′)

+ ∑
𝑙′

𝑙′𝑅𝑙′(𝐽)𝛿𝑙,𝑙′𝜔𝑠(𝐽).

(5)

Here 𝑔0(𝐽) is the normlized radial distribution, 𝑅𝑙(𝐽) is
radial distribution of angular mode 𝑙, 𝜔𝑠(𝐽) is synchrotron
tune, 𝐺𝑙,𝑙′(𝐽, 𝐽′) defines as

𝐺𝑙,𝑙′(𝐽, 𝐽′) = −𝑖𝑁𝜋𝑐𝑒2

𝐸𝜔𝛽𝑇2
0

∫
∞

−∞
𝑑𝜔𝑍⟂

1 (𝜔)𝑆∗
𝑙 (𝜔, 𝐽)𝑆𝑙′(𝜔, 𝐽′)

(6)
which corresponds to Eq. (6.195) in Ref. [5], but considering
angular mode coupling. Here 𝑆𝑙(𝜔, 𝐽) defines as

𝑆𝑙(𝜔, 𝐽) = 1
2𝜋 ∫

2𝜋

0
𝑑𝜙𝑒

𝑖𝑙𝜙−𝑖 𝑧(𝐽,𝜙)
𝑐 (𝜔−

𝜉𝜔𝛽
𝜂 )

, (7)

which degenerates to

𝑖−𝑙𝐽𝑙 ( 𝑟
𝑐 (𝜔 − 𝜉𝜔𝛽/𝜂))

in Eqs. (6.177-6.178)in Ref. [5]. Eq. (7) is a compromise
on asymmetric potential. Almost all existing models, such
as water-bag model, hollow bunch, parabolic bunch, small
amplitude approximation of Gaussian and ideal-lengthening
bunch, are symmetric. Because of asymmetry, function
𝑆𝑙(𝜔, 𝐽) will be numerically calculated combined with dis-
cretization that not only in radial direction as Venturini did
but also angular direction.

By discretization of Eq. (5) in radial direction, it becomes
an eigen value problem

(Ω(𝑙) − 𝜔𝛽)�⃗�𝑙𝑗 = 𝑀𝑙𝑗,𝑙′𝑗′�⃗�𝑙′𝑗′

𝑀𝑙𝑗,𝑙′𝑗′ = 𝑔0(𝐽𝑗)𝐺𝑙,𝑙′(𝐽𝑗, 𝐽𝑗′)Δ𝐽𝑗′ + 𝑙′𝛿𝑙𝑙′𝜔𝑠(𝐽𝑗)
.

(8)
Notice that at vanishing beam intensity 𝑁 = 0, 𝑀𝑙𝑗,𝑙′𝑗′ will
be a diagonal matrix with elements {𝑙𝜔𝑠(𝐽𝑗)|𝑗 = 1, ..., 𝑛𝐽}.
That’s the reason of tune spread of each azimuthal mode,
except 𝑙 = 0.

COMPARE WITH TRANSFER MATRIX
METHOD

Settings
The toy model of HEPS is shown in Table 1 and settings

of two cases are shown in Table 2, Case #1 represents a
set of sub-optimal lengthening parameters, while Case #2
represents optimal lengthening parameters.

Sampling Method
Assuming maximum 𝑧 of sampling points reaches 𝑛𝜎𝑧,

the number of radial, angular discretization meshes is 𝑛𝐽,
𝑛𝜙, where 𝑛𝜙 is an even number. Then we can sample as
described below:

Table 1: Toy Model of HEPS

Parameter Value

Beam energy, 𝐸, GeV 9
Circumference, 𝐶, m 1360.4
Primary harmonic number, ℎ1 756
Ratio of harmonic number, ℎ = ℎ2/ℎ1 3
Energy spread, 𝜎𝛿 1.06 × 10−3

Momentum compaction factor, 𝛼𝑐 1.56 × 10−5

Vertical betatron tune, 𝜈𝑦 106.23
Bunch charge, 𝑁, nC 2

Table 2: Settings of Two Cases

Parameter #1 #2

Primary RF Voltage, 𝐸, MV 3.6395 3.6395
Voltage ratio, 𝑟 = 𝑉2/𝑉1 0.1819 0.1802
Primary RF phase, 𝜙𝑠, rad 1.8928 2.0390
Harmonic RF phase, 𝜙2𝑠, rad 5.2598 5.7005
Bunch length, 𝜎𝑧, cm 2.5763 2.9078
Average synchrotron tune, ⟨𝜈𝑠⟩, 10−4 1.6145 0.9912
Number of radial samples, 𝑛𝐽 60 80
Number of angular samples, 𝑛𝜙 300 400
Maximum angular mode, 𝑙𝑚 3 3
𝑛 = 𝑧max/𝜎𝑧 4 4

• Calculate longitudinal density 𝜌(𝑧);
• Uniformly sample 𝑛𝐽 points within the range of 0 to

𝑛𝜎𝑧, which is 𝑛𝐽 𝑧max’s of Hamiltonian tori;
• Calculate 𝑛𝐽 𝑧min’s, Hamiltonian 𝐻’s, radial unpertur-

bated density 𝑔0(𝐽) = 𝜌(𝑧max) of these Hamiltonian
tori.

• Calculate action variable 𝐽 of each torus according to

𝐽 = 1
𝜋 ∫

𝑧max

𝑧min
𝛿𝑑𝑧;

• Calculate synchrotron tune spread 𝜈𝑠(𝐽) and average
synchrotron tune ⟨𝜈𝑠⟩ by:

𝜈𝑠(𝐽) = 𝐶
2𝜋

𝑑𝐻
𝑑𝐽 ,

⟨𝜈𝑠⟩ = 2𝜋 ∫
∞

0
𝑔0(𝐽)𝜈𝑠(𝐽)𝑑𝐽.

• Take angular sample of each torus between 𝑧min to 𝑧max
by

𝑧𝑖 = 𝑧𝑝 + 𝑟 ⋅ cos 𝑖 ⋅ 2𝜋
𝑛𝜙

, (0 ≤ 𝑖 ≤ 𝑛𝜙)

here 𝑧𝑝 = 0.5(𝑧min + 𝑧max), 𝑟 = 0.5(𝑧max − 𝑧min).
• Caculate angle variable 𝜙 at each point according to

𝐹2(𝑧, 𝐽) = ∫
𝑧max

𝑧
𝛿(𝑧, 𝐽)𝑑𝑧,

𝜙 = 𝜕𝐹2
𝜕𝐽 .
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Results
We compared our method with Chuntao Lin’s transfer

matrix method [6]. We compared two typical settings, sub-
optimal and optimal lengthening, and the corresponding lon-
gitudinal distribution 𝜌(𝑧) and synchrotron tune spread 𝜈𝑠(𝑧)
was shown in Fig. 1. As shown in Fig. 1, the synchrotron
tune spread cannot be ignored, or the density distribution is
asymmetric.

Figure 1: Distribution(solid) and synchrotron tune
spread(dashed) of Case #1(red) and Case #2(blue) lengthen-
ing.

Under sub-optimal and optimal lengthening conditions,
our results are consistent. As shown in Fig. 2, we can clearly
see when the 𝑙 = 0 mode and the 𝑙 = −1 mode are cou-
pled, the instability occurs. In Fig. 3, we cannot find the
threshold of instability clearly as Venturini said [4]. In fact,
the tune shift points at 𝑁 = 0 nC are dominated by radial
sampling points, and the maximum tune shift of 𝑙 = −1

Figure 2: Growth rate per second and tune shift of Case
#1(sub-optimal).

Figure 3: Growth rate per second and tune shift of Case
#2(optimal).

mode is broadened to 𝑙 = 0 mode under optimal lengthening
condition.

CONCLUSION
In this paper, we proposed a general Vlasov discretization

method that can calculate growth rate and mode coupling
for arbitrary sub-optimal and optimal lengthening bunches.
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