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Abstract
The possibility of steady acceleration of particles in the

presence in a tube of drift of a foil which plane is paral-
lel to an axis is studied. For calculation of the field the
method of conformal transformations is used. Conditions
of simultaneous acceleration with stability of the cross and
longitudinal movement are found out.

INTRODUCTION
For focusing of bunches of heavy charged particles fo-

cusing by grids - the folga located along an axis which
plane is parallel to an axis of the accelerating system is of-
fered (see [1]). For studying of properties in the real work
the simplest option of such system is considered - the foil
settles down on a drift tube axis, and influence of a foil will
be studied in flat geometry that gives the chance for calcu-
lation of the field to apply a method of conformal transfor-
mations.

THE FIELD IN A STRIP WITH A CUT
Method of conformal transformations. Let z = x +

iy, w = u+ iv. Transformation

w + ia =
a

π
ln(1 − e

πz
a ) (1)

transfers a strip with a cut to z planes in a strip without cut
in w plane. At this transformation

u =
a

2π
ln

(
1− 2e

πx
a cos(

πy

a
) + e

2πx
a

)
, (2)

v = − a

π
arctan

sin πy
a

e−
πy

a − cos πy
a

− a

π
(3)

The straight line of y = +a,−∞ < x < +∞ passes
in half line v = −a, 0 < u < +∞, top coast of drift
y = 0, x < 0 meets to half line v = −a,−∞ < u < 0.
Borders of the accelerating interval [0, b] meets to [α, β]
where α = a

π
ln 2, β = a

π
ln(1 + e

π
b
a). Particle moves

along axes x in negative direction. Length of tube drift
d are d >> a, where a-an aperture. Actual width of
a foil as it will be visible from expression for the field
on an axis, can be about a/π because of exponential de-
crease of the field. As boundary conditions we will put:
Ex(x, a) = f(x), f = E0σxσ(b − x). Here σ(x) - the
Heaviside function. Components of the potential field �E
upon transition from w to z will be transformed by in a
complaining way:

Ex = AEu +BEv, Ey = −BEu +AEv, (4)

where

A =
∂u

∂x
=

∂v

∂y
=

exp(2πx
a

)− exp(πx
a
) cos(πy

a
)

1− 2 exp(πx
a
) cos(πx

a
) + exp(2πx

a
)
(5)

B =−∂u

∂y
=

∂v

∂x
= − exp(πx

a
) sin(πy

a
)

1− 2 exp(πx
a
) cos(πx

a
) + exp(2πx

a
)

(6)

We will pass, further, from boundary conditions for Ex

to boundary conditions for Eu.. Using ratios 1.4-1.6 for
Ex(x, a) we will find :

Eu(u, a) = g(u) =
E0

(1− exp(−πu
2 )

σ(u− α)σ(β − u) (7)

We will find, further, field components in w plane. From

Eu =
1

2π

∫ ∫
dkdu′g(u′) exp{ik(u− u′)}cosh(kv)

cosh(ka)
,(8)

and for Ev we have:

Ev =
1

2πi

∫ ∫
dkdu′g(u′) exp{ik(u− u′)} sinh(kv)

cosh(ka)
,(9)

Integrals in (1.8) and (1.9) can be expressed in elementary
functions. Using (1.4) it is possible to calculate Ex(x, 0)
and Ey(x, 0). Ex(x, 0) �= 0 only at x > 0, whereas Ey �=0
only at x <0. When transforming (1.1) this half shaft
passes into v = 0. From (1.5) for definition of Ex(x, 0)
to know Eu(u, 0).We will finally receive :

Ex(x, 0) = − 1

π

[ 1√
e
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1 + e

πb
a − 1√
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(10)
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For definition of Ey(x, 0) needs to find Ev(u,−a). Can be
received:

Ey(x, 0) =
1

π

1√
1− e
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a
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1 + e
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THE FOCUSING ACTION OF A GRID
Let charged particle fly from a point with x = ∞ to a

point with x = −∞ at a >> y > 0. Further, we will con-
sider that the external field changes under the sinusoidal
law, i.e. force operating on a particle is defined by a vector
�E(x(t), y(t)) cos(ωt + φ). The movement of the nonrela-
tivistic particle are described by two equations:

d

dt
mẋ = Ex(x(t), y(t)) cos(ωt+ φ), (1)

d

dt
mẏ = Ey(x(t), y(t)) cos(ωt+ φ) (2)

The longitudinal movement is steady if steady solution of
the equation

q̈ =
e

m

∂Ex

∂x
cos(ωt+ φ)q, (3)

where q = x − xs (xs - coordinate a basis of a particle,
x - the coordinate of the displaced particle). The equation
(2.3) is steady if∫ ∞

−∞

∂Ex

∂x
cos(ωt+ φ) > 0. (4)

The increment of a longitudinal impulse when passing ac-
celerating interval a has to be positive, i.e.

mẋ = e

∫ ∞

−∞

Ex(x(t), y(t)) cos(ωt+ φ) > 0. (5)

We will demand, further, that ẏ < 0, if particle flies upper
axis and ẏ > 0, if the particle flies below an axis. Be-
cause of antisymmetry of Ey for y these requirements are
compatible Execution them results in stability in the cross
direction.

mẏ = e

∫ ∞

−∞

Ey(x.y) cos(ωt+ φ) < 0. (6)

Below will be found area of phases φ, where conditions
(2.4), (2.5), (2.6) are executed at the same time. We will
enter new variables:

ξ =
πx

a
, η =

πy

a
,

Eη(ξ, η) = Ey(
aξ

π
,
aη

π
), Eξ(ξ, η) = Ex(

aξ

π
,
aη

π
)

also we will designate p = ωa
πv

. Conditions (2.4), (2.5),
(2.6) will take the following form (taking into account that
t = −x

v
: ∫ ∞

−∞

∂Eξ(ξ, η)

∂ξ
cos(pξ − φ)dξ (7)

= p

∫ ∞

−∞

Eξ(ξ, η) sin(pξ − φ)dξ < 0,

mξ̇ =
e

v

∫ ∞

−∞

Eξ(ξ, η) cos(pξ − φ)dξ > 0, (8)

mη̇ =
e

v

∫ ∞

−∞

Eη(ξ, η) cos(pξ − φ)dξ > 0. (9)

For calculation of integrals we will use analyticity of func-
tion of E(ξ + iη) = Eξ + iEη, which follows from equal-
ities∇ �E = 0, nabla× �E = 0.We will consider a contour
C, formed by a trajectory of a particle, axis η = 0 and
closed on ±∞.
From ratios

∫
C
(Eξ + iEηe

±i(p]xi+φ)dζ) =0 can be re-
ceived ∫ ∞

−∞

Eξ(ξ, η) cos(pξ − φ)dξ = (10)

cosh(pη)

∫ ∞

−∞

Eξ(ξ, 0) cos(pξ − φ)dξ −

sinh(pη)

∫ ∞

−∞

Eη(ξ, 0) sin(pξ − φ)dξ

∫ ∞

−∞

Eη(ξ, η) cos(pξ − φ)dξ = (11)

cosh(pη)

∫ ∞

−∞

Eη(ξ, 0) cos(pξ − φ)dξ +

sinh(pη)

∫ ∞

−∞

Eξ(ξ, 0) sin(pξ − φ)dξ

We will consider further that the parameter of p = ωa
πv

<<
1. From a type of expressions (1.10) and (1.11) follows
what can be put:∫ ∞

0

Eξ(ξ, 0) sin(pξ)dξ = −pK,

∫ ∞

0

Eξ(ξ, 0) cos(pξ)dξ = −L
∫ 0

−∞

Eη(ξ, 0) sin(pξ)dξ = −pM,

∫ 0

−∞

Eη(ξ, 0) cos(pξ)dξ = N,

where the sizes K,L,M,N are positive. Simultaneous per-
formance of conditions (2.7), (2.8), (2.9) determines the
following area of values φ:

3π

2
− arctan(

pM

N
) > φ > π + arctan(

pK

L
). (12)

At p →0 this area passes in 3π
2 > φ > π. The area of

rather great values of p is characterized by existence of the
impulse directed from an axis. I.e. steady acceleration is
possible at rather big speeds of particles.

CONCLUSION
In work the field in a difficult configuration is calculated

and the area of steady acceleration of charged particles is
defined.
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