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Abstract 

Analytically calculated matrices of the optical conver-
sion of the elements of the focusing system of the Low En-
ergy Particle Toroidal Accumulator (LEPTA) and the lon-
gitudinal magnetic field perturbations appearing in the 
technical connections of the ring elements are presented. 
Based on the matrix data, a program was written in the 
Wolfram Mathematica environment, which allows simu-
lating the multiturn dynamics of particles in a ring and in-
vestigating the stability of their motion.  

THE LEPTA SET UP 
The LEPTA (Low Energy Particle Toroidal Accumu-

lator) setup (see Fig. 1) is a storage ring with a perimeter 
of 17.2 m with a circulating positron beam in the energy 
range 1-10 keV 

 
Figure 1: LEPTA set up diagram: 1 - injector; 2 - positron 
trap; 3 - section for injection of positrons; 4 - septum so-
lenoids; 5 - kicker (located inside the septum solenoid); 6 
- toroidal solenoids; 7 - solenoid and quadrupole coil; 8 - 
section of electron cooling, straight solenoid; 9-dipole an-
alyzing magnet; 10 - coordinate-sensitive detector; 11 - 
electron gun; 12 - collector of electrons; 13 - the vacuum 
pump. 

The LEPTA set up uses a section structure, which 
makes it possible to introduce additional straight sections 
where the injection and extraction sections of the beam and 
the diagnostic device are placed. 

To maintain charged particle motion in the LEPTA, a 
longitudinal magnetic field is used that accompanies the 
particles from the source and along the entire orbit of the 
circulating beam. Thus, the particles in the LEPTA are 
"magnetized". The stability of the beam circulation is pro-
vided by introducing, in addition to the longitudinal mag-
netic field, the field of the helix quadrupole lens (further - 
quadrupole) in the section 7. 

Between the individual focusing elements of the ring 
there are technical joints in which adiabatic perturbations 
of the magnetic field are formed (see Fig. 2). These gaps 
have a significant influence on the beam dynamics in the 
ring that also directly affects on the lifetime of circulating 
particles (see Fig. 3). 

 
Figure 2: Experimentally measured perturbation of the 
longitudinal magnetic field before and after correction. 

 
Figure 3: Experimentally measured dependences of the 
lifetime of a charged particle on their energy. 

 

PARTICLE DYNAMICS IN THE LEPTA 
RING 

The particle trajectory in an electromagnetic field is 
described by a differential equation [1]: 

𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝑒𝑒𝐸𝐸�⃗ +
𝑒𝑒
𝑐𝑐
∗ �𝑣⃗𝑣 × 𝐵𝐵�⃗ � (1) 

For a region with a quadrupole and straight solenoid, 
equation (1) has the form: 
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⎩
⎪
⎨

⎪
⎧𝑥𝑥′′(𝑠𝑠) −

1
𝜌𝜌𝐿𝐿
𝑦𝑦′(𝑠𝑠) +

1
𝜌𝜌𝐿𝐿
𝐵𝐵𝑦𝑦(𝑠𝑠)
𝐵𝐵0

= 0

𝑦𝑦′′(𝑠𝑠) +
1
𝜌𝜌𝐿𝐿
𝑥𝑥′(𝑠𝑠) −

1
𝜌𝜌𝐿𝐿
𝐵𝐵𝑥𝑥(𝑠𝑠)
𝐵𝐵0

= 0
. (2) 

where 𝜌𝜌𝐿𝐿 = 𝑝𝑝𝑝𝑝
𝑒𝑒𝑒𝑒

is the radius of the Larmor rotation; 𝐵𝐵0 
is the longitudinal magnetic field. The transverse compo-
nents of the quadrupole magnetic field are described by the 
formulas [2]: 

�
𝐵𝐵𝑥𝑥(𝑠𝑠) = −𝐺𝐺(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥[2𝑘𝑘𝑘𝑘] − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦[2𝑘𝑘𝑘𝑘])
𝐵𝐵𝑦𝑦(𝑠𝑠) = 𝐺𝐺(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥[2𝑘𝑘𝑘𝑘] − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦[2𝑘𝑘𝑘𝑘]) . 

Performing the transformation 𝑈𝑈(𝑠𝑠) = 𝑥𝑥(𝑠𝑠) + 𝑖𝑖𝑖𝑖(𝑠𝑠), 
we seek a solution in the Wentzel-Kramers-Brillouin ap-
proximation (WKB) [3] in the form 𝑈𝑈(𝑠𝑠) = 𝐴𝐴(𝑠𝑠)𝑒𝑒𝜒𝜒(𝑠𝑠)𝑑𝑑𝑑𝑑. 
In turn, 𝐴𝐴(𝑠𝑠) is sought in the form𝐴𝐴(𝑠𝑠) = 𝑎𝑎(𝑠𝑠) + 𝑖𝑖𝑖𝑖(𝑠𝑠) =
𝐶𝐶𝑎𝑎𝑒𝑒∫𝜅𝜅𝜅𝜅𝜅𝜅 + 𝑖𝑖𝐶𝐶𝑏𝑏𝑒𝑒∫𝜅𝜅𝜅𝜅𝜅𝜅. As a result, we obtain a 4 × 4 
transport matrix for the quadrupole. Below, because of the 
awkwardness of the results obtained, only a single element 
of the matrix is presented: 

𝑚𝑚𝑄𝑄11 = �1 +
𝑘𝑘𝜌𝜌𝐿𝐿 − 𝑇𝑇1𝐴𝐴1
𝑇𝑇1𝐴𝐴1 − 𝑇𝑇2𝐴𝐴2

� (𝑐𝑐𝑐𝑐𝑐𝑐[𝑇𝑇1𝑧𝑧]𝑐𝑐𝑐𝑐𝑐𝑐[𝜒𝜒]

+ 𝐴𝐴1𝑠𝑠𝑠𝑠𝑠𝑠[𝑇𝑇1𝑧𝑧]𝑠𝑠𝑠𝑠𝑠𝑠[𝜒𝜒])

− �
𝑘𝑘𝜌𝜌𝐿𝐿 − 𝑇𝑇1𝐴𝐴1
𝑇𝑇1𝐴𝐴1 − 𝑇𝑇2𝐴𝐴2

� (𝑐𝑐𝑐𝑐𝑐𝑐[𝑇𝑇2𝑧𝑧]𝑐𝑐𝑐𝑐𝑐𝑐[𝜒𝜒]

+ 𝐴𝐴2𝑠𝑠𝑖𝑖𝑖𝑖[𝑇𝑇2𝑧𝑧]𝑠𝑠𝑠𝑠𝑠𝑠[𝜒𝜒]) 
where 𝑘𝑘 = 2𝜋𝜋

ℎ
, h – is the winding period of the quadrupole; 

𝜒𝜒 = 𝑘𝑘𝜌𝜌𝐿𝐿𝑧𝑧; �
𝐴𝐴1 = √2�𝐴𝐴𝐷𝐷+𝐵𝐵𝐷𝐷𝐶𝐶𝐷𝐷

(𝐴𝐴𝐷𝐷+𝐵𝐵𝐷𝐷)+2𝐷𝐷𝐷𝐷

𝐴𝐴2 = √2�𝐴𝐴𝐷𝐷−𝐵𝐵𝐷𝐷𝐶𝐶𝐷𝐷
(𝐴𝐴𝐷𝐷−𝐵𝐵𝐷𝐷)+2𝐷𝐷𝐷𝐷

, in its turn 𝐴𝐴𝐷𝐷,𝐵𝐵𝐷𝐷 ,𝐶𝐶𝐷𝐷 and 

𝐷𝐷𝐷𝐷 − are polynomials of unit dimension containing quad-
rupole parameters 𝑘𝑘 and 𝑔𝑔 = 𝐺𝐺

𝐵𝐵0
, as well as 𝜌𝜌𝐿𝐿 and gradient 

of the magnetic field in the quadrupole 𝐺𝐺. 
A detailed record of all elements of the optical transi-

tion matrix of the spiral quadrupole as well as the matrix 
elements described below will be given in [4]. 

𝜅𝜅 = 𝜅𝜅𝑄𝑄1 =
𝑇𝑇1
𝜌𝜌𝐿𝐿

= ±
1
𝜌𝜌𝐿𝐿

1
√2

�𝐴𝐴𝐷𝐷 + 𝐵𝐵𝐷𝐷 ⟶
1
𝜌𝜌𝐿𝐿

(3) 

𝜅𝜅 = 𝜅𝜅𝑄𝑄2 =
𝑇𝑇2
𝜌𝜌𝐿𝐿

= ±
1
𝜌𝜌𝐿𝐿

1
√2

�𝐴𝐴𝐷𝐷 − 𝐵𝐵𝐷𝐷 ⟶ �𝑘𝑘2 − 𝑔𝑔2 (4) 

The parameter 𝜅𝜅 is obtained from the equality to zero 
of the determinant of the matrix, constructing of the coef-
ficients at x and y in equations, describing the particle mo-
tion. 

(3) is the frequency of fast Larmor rotation of the par-
ticle around the line of force, (4) is the frequency of slow 
betatron oscillations made by the particle across the mag-
netic field line. 

Limit values in (3) and (4) are reached when one of 
the the infinitesimal parameters 𝑔𝑔𝜌𝜌𝐿𝐿 , 𝑘𝑘𝜌𝜌𝐿𝐿 ≪ 1 

Here and below, all results are given in dimensionless 
coordinates 𝑧𝑧 = 𝑠𝑠

𝜌𝜌𝐿𝐿
.  

If we take 𝐵𝐵𝑥𝑥 = 0, 𝐵𝐵𝑦𝑦 = 0, in the system of equations 
(2), then, solving the system, we obtain the transition ma-
trix for a section of a homogeneous longitudinal magnetic 
field: 

𝑀𝑀𝑆𝑆 = �

1 𝑠𝑠𝑠𝑠𝑛𝑛𝐼𝐼1 0 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼1
0 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼1 0 𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼1
0 −(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼1) 1 𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼1
0 −𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼1 0 𝑐𝑐𝑐𝑐𝑐𝑐𝐼𝐼1

� . (6) 

For the case of an homogenous field, system (2) re-
tains its form, but now the transverse components of the 
field will be written as 𝐵𝐵𝑥𝑥(𝑠𝑠) = −𝑟𝑟

2
𝑑𝑑𝐵𝐵𝑠𝑠
𝑑𝑑𝑑𝑑
�
𝑟𝑟=0

𝑥𝑥
𝑟𝑟
,   𝐵𝐵𝑦𝑦(𝑠𝑠) =

−𝑟𝑟
2
𝑑𝑑𝐵𝐵𝑠𝑠
𝑑𝑑𝑑𝑑
�
𝑟𝑟=0

𝑦𝑦
𝑟𝑟
. 

The solution is also sought by the WKB method. We 
find that for the region of the perturbed field the values of 
parameter 𝜅𝜅 is equal to 

𝜅𝜅 = 𝜅𝜅𝐺𝐺 ≡ ± �𝑖𝑖 𝜌𝜌𝐿𝐿
⁄
𝑔𝑔(𝑠𝑠)(5) 

that has the same physical meaning as 𝜅𝜅𝑄𝑄 in (3) and 
(4), respectively. 

The transport matrix for a section of the perturbed 
field has the form:  

𝑚𝑚𝐺𝐺11 = �
1 + 𝑔𝑔𝜌𝜌
1 + 𝑔𝑔𝜌𝜌2

𝑔𝑔𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐[𝐼𝐼1] +
1 − 𝑔𝑔𝜌𝜌
1 + 𝑔𝑔𝜌𝜌2

𝐶𝐶𝐶𝐶𝐶𝐶ℎ[𝐼𝐼2]� 

where  𝑔𝑔𝜌𝜌 = 𝑔𝑔0𝜌𝜌𝐿𝐿,  𝑔𝑔0  is  the  amplitude  of   the  field  
perturbation, 𝐼𝐼1 = 𝑠𝑠

𝜌𝜌𝐿𝐿
= 𝑧𝑧𝜌𝜌𝐿𝐿

𝜌𝜌𝐿𝐿
= 𝑧𝑧,                                                                          

𝐼𝐼2 = ∫𝑔𝑔(𝑠𝑠)𝑑𝑑𝑑𝑑 = −1
2

1
𝐵𝐵0
𝜌𝜌𝐿𝐿 ∫

𝑑𝑑𝐵𝐵𝑧𝑧
𝑑𝑑𝑑𝑑
�
𝑟𝑟=0

𝑑𝑑𝑑𝑑. 
  
In toroidal sections, an additional transverse magnetic 

field is applied to compensate for the centrifugal-gradient 
drift. The equations of particle motion in the toroidal sec-
tion can be obtained from (1.9) - (1.11) [1, page 7]: 

⎩
⎪
⎨

⎪
⎧𝑥𝑥′′(𝑠𝑠) −

1
𝜌𝜌𝐿𝐿
𝑦𝑦′(𝑠𝑠) +

𝑥𝑥(𝑠𝑠)
𝑅𝑅02

=
1
𝑅𝑅0

−
1
𝜌𝜌𝐿𝐿
𝐵𝐵𝑦𝑦(𝑠𝑠)
𝐵𝐵0

𝑦𝑦′′(𝑠𝑠) +
1
𝜌𝜌𝐿𝐿
𝑥𝑥′(𝑠𝑠) =

1
𝜌𝜌𝐿𝐿
𝐵𝐵𝑥𝑥(𝑠𝑠)
𝐵𝐵0

, 

 

𝐵𝐵𝑥𝑥 = 0,𝐵𝐵𝑦𝑦 =
𝜌𝜌𝐿𝐿𝐵𝐵0
𝑅𝑅0

 

The solution for x(s) is sought in the WKB approxi-
mation in the following form 𝑥𝑥(𝑠𝑠) = 𝐴𝐴0 + 𝐴𝐴𝑠𝑠𝑠𝑠 + 𝐴𝐴𝑥𝑥𝑒𝑒𝑖𝑖𝜅𝜅𝑇𝑇𝑠𝑠. 

We obtain 𝜅𝜅𝑇𝑇 = ±�
1
𝑅𝑅0
2 + 1

𝜌𝜌𝐿𝐿
2 = ±𝑇𝑇, and the matrix itself 

has the form: 
𝑚𝑚𝑇𝑇11 = (1 − 1 𝑇𝑇2⁄ )𝑐𝑐𝑐𝑐𝑐𝑐[𝑇𝑇𝑇𝑇] + 1 𝑇𝑇2⁄  

The matrix of the ring can be obtained by multiplying 
the matrices of the individual elements: 

 𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝐺𝐺2𝑀𝑀𝑇𝑇𝑇𝑇1𝑀𝑀𝐺𝐺3𝑀𝑀𝑇𝑇𝑇𝑇2𝑀𝑀𝐺𝐺4𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆1𝑀𝑀𝑄𝑄𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆2𝑀𝑀𝐺𝐺5𝑀𝑀𝑇𝑇𝑇𝑇2𝑀𝑀𝐺𝐺6

𝑀𝑀𝑇𝑇𝑇𝑇2𝑀𝑀𝐺𝐺1  

Multiplying the matrix of the ring by the initial condi-
tions vector, and raising 𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 to the power of N, we ob-
tain the coordinates of the particle 𝑥𝑥, 𝑥𝑥′,𝑦𝑦,𝑦𝑦′ after the N 
turns in the ring. 
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a)

 
b) 

 
c) 

 
Figure 4: The dependence of the number of revolutions 
of the steady motion of a charged particle in the ring on 
the magnitude of the longitudinal magnetic field for dif-
ferent values of the quadrupole current I_GαG For cases 
with the perturbation amplitude g_0 a) 5%, b) 2.5%, c) 
1%.

 

MAIN RESULTS 
The results of the simulation (see Fig. 4) show that 

with a decrease in the amplitude of field perturbations, the 
number of revolutions of the stable motion of   particles in 
the ring increases. In this case, there are areas of a sharp 
decrease, independent of the magnitude of the field pertur-
bation. It was found that in these sections half of the spur 
of the quadrupole matrix     �1

2
𝑇𝑇𝑇𝑇�𝑀𝑀𝑄𝑄�� ≥ 1 (see  

Fig. 5), while similar values for the remaining matrices, in-
cluding for the matrix of the ring, do not correlate with the 
number of particle turns in the ring. 

 
Figure 5: Correlation of the particle rotation speed in the 
ring with the value 1/2 𝑇𝑇𝑇𝑇 [𝑀𝑀_𝑄𝑄]. 

 
Thus, the value of parameter 1

2
𝑇𝑇𝑇𝑇�𝑀𝑀𝑄𝑄� determines the sta-

bility of particle motion in the ring, which corresponds to 
the general theory of particle motion in focusing systems. 
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