
UPGRADE OF APPLICATION-LEVEL SOFTWARE OF VEPP-5

INJECTION COMPLEX

F. A. Emanov∗, D.Yu. Bolkhovityanov, V.V. Balakin, D.E. Berkaev, Yu.A. Rogovsky

The Budker institute of nuclear physics, 630090 Novosibirsk, Russia

Abstract

VEPP-4 and VEPP-2000 experimental facilities are fed

with e+e- beams from VEPP-5 injection complex(IC).

Application-level software of IC control system is based

on CXv4 framework. This software includes a set of engi-

neering and debugging tools for all the hardware, a database

with high-level information and configuration tools, machine

mode manipulation system, automatic control and data analy-

sis programs. The software architecture and implementation

is described.

INTRODUCTION

VEPP-5 injection complex (IC) [1–3] is an electron and

positron beam source for BINP colliders VEPP-4 [4] and

VEPP-2000 [5]. Beams are transferred to colliders by K-

500 channel. Layout of injection complex with colliders is

shown on Fig. 1.

Figure 1: Injection complex and colliders layout.

Injection complex had had a long period of serving as

test facility until 2015. During this time injection complex

control system software was based on CX and EPICS frame-

works and application level software mostly consisted of

engineering GUI programs. This software set allowed us

to run injection complex as test facility but was not accept-

able for routine operation with beam users. It was required

to create centralized configuration and operation tools and

automatize frequent processes. Since two frameworks were

applied it was needed to support both of them in our software.

Some of required software was implemented earlier [6]. At

the end of 2017/2018 experimental season we decided to

fully migrate base control system software to CX since this

framework served more than 90% of injection complex con-

trol hardware. By the time most of migration work has been

completed. Current state of injection complex software is

described bellow.

SOFTWARE DEVELOPMENT TOOLS

Software development is carried out in C/C++ and Python.

In order to simplify application-level software development

∗ f.a.emanov@inp.nsk.su

we created fast Cython bindings to CX client libraries called

pycx4. Currently pycx4 can operate in CX event-loop or

Qt4 or Qt5 ones. We use PyQt for joined CX and EPICS

programs and for GUI software development. We use

cothread.catools for EPICS devices access. In order to be

able to use cothread in modern environment we added PyQt5

support and Qt version auto selection to cothread.

A set of PyQt4/5 widgets with embedded CX access was

developed to simplify GUI programs creation. Since we are

using Qt Designer for rapid software prototyping, designer

plugins for CX widgets also implemented. We are currently

considering possibility to bind CX to Taurus SCADA.

CONFIGURATION AND ACCELERATOR

MODE DATABASES

Large experimental facilities like injection complex re-

quire lots of configuration information. In general this

configuration information is structured data about machine.

Therefore it can be presented in form of graph of some

accelerator elements and their relations. Several attempts

of implementation configuration tools in a control system

agnostic way were made [7, 8]. But to our consideration

these tools have not been developed to production-level. So

we decided to develop our own configuration tools without

solving too general problems. Databases are an appropriate

engine to solve problems of configuration and storage for

accelerator data like operation logs and modes. We have

been using Postgresql since it is the most advanced open

source database and it is suitable for all our needs. Currently

we migrated to Postgresql 10 since native table partitioning

was introduced in this version.

We designed databases and configuration tools in order

to reach the following goals:

• to create configuration source for accelerator mode

management system and operation logs.

• to create configuration generation scripts for CX.

• to minimize database deployment efforts.

• to create effective storage for accelerator mode data.

• to make mode data tolerant to software and hardware

changes.

In order to store control system structure we designed

"line" of objects: namespace, device, devtype, channel.

Namespace, device and channel are significant parts, and

devtype serves for reduction amounts of object relations.

We believe logical accelerator systems can be formed to tree

structure. Device can be a part of few different systems.

Sometimes there is some information about device which

is not common to all devices. In this case we can store

THPSC12 Proceedings of RuPAC2018, Protvino, Russia

ISBN 978-3-95450-197-7
432Co

py
rig

ht
©

20
18

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Control and diagnostic systems



it as JSON metadata. Developed structure of objects and

relations is shown on Fig. 2

Figure 2: Configuration database objects.

In order to edit data or structure of database along with

ordinary database tools we use Django [9] applications. In

some cases we use Django ORM for GUI programs. First,

self-implemented adjacency list tree was used. But then

we switched to materialized path tree implementation from

Django treebeard [10].

Data of accelerator modes is stored in separate database.

Information about control system channels generated from

configuration database is added to fullchan table. So we have

some data redundancy here but it simpifies mode selection

and increase performance. Mode is stored in mode table,

channels information is stored to modedata. Mode can have

labels which are used for automatic control and stored to

modemark table. Since modedata table can grow to a big

size we used native postgresql partitioning with Partman

extension to simplify management. Mode database structure

is shown on Fig. 3. This database keeps only data required

to save or load accelerator modes, but complex mode man-

agement tools may require some data from configuration

database.

Figure 3: Mode database structure.

MACHINE MODE MANAGEMENT

Injection complex operation requires rapid manipulations

with states of accelerator logical subsystems. Such manip-

ulations are involved in storage-extraction loop, switching

particles or beam users. Centralized mode management by

special daemon was implemented in order to solve these

problems.

Manager daemon continuously reads all the control sys-

tem channels therefore mode can be instantly saved. If mode

is used by automatic applications it’s labeled with special

marks and pre-loaded to manager cache from database. In

this case mode selection time becomes neglectable.

We created GUI client program which can manage modes

in a very flexible way. Another clients of mode loader is

automatic software which implements routine operations of

supplying beam users as shown on Fig. 4.

Figure 4: Mode management software structure.

AUTOMATIC SOFTWARE

Injection Complex has 0.2 - 2 Hz storage-extraction loop

duration and sometimes it is required to switch particles ev-

ery 30-60 seconds. Storage-extraction loop and switching be-

tween particles and users are implemented in two programs.

In 2017/2018 season these programs were having simple

connection through CX postbox channels to synchronize

selected particles. With this solution operator’s attention in

a regular run required few times per hour. In order to make

injection complex operation more convenient modes used

by automatic programs were color-encoded. GUI program

for particle and user switching is shown on Fig. 5.

Figure 5: Particle and user switching GUI program.

There are two more obvious needs for automatic pro-

grams:

• machine parameter stabilization,

• abnormal situation and failure analysis and automatic

recovery.

We have implemented abnormal situations and failures

analysis and automatic recovery service in general way and

applied it to vacuum and magnetic systems. And we are

going to extend this software to all other systems and con-

nect it to automatic machine operation programs. Machine

parameter stabilization has not been implemented yet. We

are going to try it in 2018/2019 season.

DATA PROCESSING

There are a lot of data processing tasks which can help in

machine studies and operation like:

• devices stability analysis,

• extra parameter calculations,

Proceedings of RuPAC2018, Protvino, Russia THPSC12

Control and diagnostic systems
ISBN 978-3-95450-197-7

433 Co
py

rig
ht

©
20

18
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs



• signal amplitude and time change determination,

• BPM data preprocessing,

• image data preprocessing.

We believe the best way is to create microservice for each

particular processing problem. Service performs necessary

calculations and publishes results to CX server, then any

other program can use the results. Example of frontend

program which shows processing results is shown on Fig. 6

We are constantly deploy such microservices according to

current needs.

Figure 6: Frontend for kicker signal analysis.

CONCLUSION

During 2017/2018 automatic software development dra-

matically reduced number of required operator’s actions.

Implemented development tools significantly simplified

application-level software development and increased in-

terest to it. Database structure and function upgrade signifi-

cantly increased performance of database applications.

REFERENCES

[1] D. Berkaev et al., “VEPP-5 Injection Complex: two collid-

ers operation experience”, in Proc. IPAC’17, Copenhagen,

Denmark, May 2017, paper WEP1K026.

[2] F.A. Emanov et al., Feeding binp colliders with the new VEPP-

5 injection complex, Proceedings of RuPAC2016, St. Peters-

burg, Russia, WEXMH01.

[3] K.V. Astrelina et al., Production of intence positron beams at

vepp-5 injection complex, JETP 2008, vol. 106, issue 1, pp

77-93.

[4] P. A. Piminov “Status of the Electron-Positron Collider VEPP-

4”, Proceedings of IPAC’17, Copenhagen, Denmark

[5] Yu. Shatunov et al., “Project of a New ElectronPositron Col-

lider VEPP-2000,” EPAC’2000, Vienna, Austria, p.439

[6] F. Emanov et al., “Present status of VEPP-5 injection complex

control system”, Proceedings of RuPAC2016, St. Petersburg,

Russia, paper THPSC085

[7] A. Makeev et al., “Centralized Software and Hardware

Configuration Tool for Large and Small Experimental

Physics Facilities”, Proc. ICALEPCS2013, San Fran-

cisco, CA, USA, October 2013, paper TUPPC022,

http://accelconf.web.cern.ch/AccelConf/

ICALEPCS2013/papers/tuppc022.pdf

[8] M.A. Ilina, P.B. Cheblakov, “Applying Ontological Approach

to Storing Configuration Data”, Proc. ICALEPCS2017,

Barcelona, Spain, October 2017, paper THMPL05,

http://accelconf.web.cern.ch/AccelConf/

icalepcs2017/papers/thmpl05.pdf

[9] Django web framework https://www.djangoproject.

com/

[10] Tree implementation for Django https://

django-treebeard.readthedocs.io

THPSC12 Proceedings of RuPAC2018, Protvino, Russia

ISBN 978-3-95450-197-7
434Co

py
rig

ht
©

20
18

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Control and diagnostic systems


