
VEPP-5 INJECTION COMPLEX CONTROL SYSTEM BASE SOFTWARE

UPGRADE

D. Bolkhovityanov∗, F. Emanov, BINP SB RAS

Abstract

VEPP-5 Injection Complex control system software is

based on CX framework. In the course of 2015-2016 it was

upgraded to version 4. K500 transport channel (delivering

e+/e- beams to VEPP-2000 and VEPP-4) has switched to

CXv4 in 2017-2018. CXv4 is a redesign from the ground

up, built in a modular fashion with maximum flexibility in

mind. CXv4 server is easily configurable via plaintext files.

Additionally, server configuration can be autogenerated from

a database containing high-level information on the facility.

CXv4 server supports artificial "mailbox" channels, which

are used by high-level facility management software for inter-

communication. For client-level access, a high-performance

binding for Python exists, and visual programming tools are

being developed.

BACKGROUND

VEPP-5 Injection Complex [1] operates at the Budker

Institute of Nuclear Physics in Novosibirsk, Russia. It feeds

BINP colliders VEPP-4M and VEPP-2000 with e+ and e-

beams via K500 transport channel.

CX control system framework was developed at BINP

in 1990s specifically for VEPP-5 [2]. Later it was also em-

ployed at several small- and middle-size facilities.

Its initial task was to serve CAMAC hardware. Later CAN-

bus hardware support was added. Since CAMAC controllers

used at VEPP-5 had changed several times during CX first

years, its driver architecture was made modular since early

days.

The 32-bit integer was hardwired as a datatype and it was

adequate for most hardware. Digital oscilloscopes, CCD

cameras and similar “vector-data” hardware were served in a

special way. However, in mid-2000s new hardware appeared

at BINP facilities, including that which natively operates

with floating-point data. Thus, it became obvious that a

broader datatype support is required.

Taking into account the accumulated experience of CX

operation, including its benefits and shortcomings, a deci-

sion was made to create a new version from the ground up,

reusing fragments of existing code, and this work started in

late 2000s.

In 2015 the new CX version 4 (CXv4) was deployed

at VEPP-5 for basic controls (magnetic and vacuum sys-

tem, thermostabilization etc.) [3]. Digital oscilloscopes and

CCDs followed the suit in 2016. Finally, K500 transport

channel has switched to CXv4 in 2017–2018, as well as

VEPP-5 RF-synchronization and modulators’ controls.

∗ D.Yu.Bolkhovityanov@inp.nsk.su

CXv4 GENERAL STRUCTURE

CX is based on a classic 3-layer model (Fig.1a).

a b

Client

Device drivers

Server

Application
layer

(middleware)
Server layer

Client

Server

Device
drivers

remdrv

d
ri

v
el

et

d
ri

v
el

etHardware
layer 2

Hardware
layer

Figure 1: (a) Classic 3-layer architecture; (b) CX with 2-part

hardware layer.

However, the lower layer can be split into two parts, if

peripherial low-performance intelligent controllers are used

(such as for CAMAC, CANbus or VME). In this case only a

“low-weight” driver (called “drivelet” in CX) runs in such a

controller and communicates with CX server (running on a

more productive node) via network (Fig.1b).

Data Exchange Paradigm

As opposed to many other control systems, CX uses com-

pletely asynchronous data interchange at all levels — from

device drivers up to operator screens.

The “Read” and “Write” requests don’t suppose immedi-

ate result, but are rather treated as messages. Thus, a read

request can be left without any answer at all. On the other

hand, data can arrive without any request, on the initiative of

the device (which is usual in case of externally-triggered de-

vices). So, this is more of a publish/subscribe model rather

than a client/server one.

CXv4 NEW FEATURES

Modularity

From the very beginning CXv4 was designed in a modular

fashion [3]. Technology of “plugins” is used instead of a

fixed implementation (see Fig.2).

Modules can be either statically linked or loaded at run-

time (via dlopen(); this is taken care of by a dedicated

“cxldr” component).

• Client library doesn’t interact with server directly but

rather via plugins. The library core provides clients

Proceedings of RuPAC2018, Protvino, Russia THPSC07

Control and diagnostic systems
ISBN 978-3-95450-197-7

417 Co
py

rig
ht

©
20

18
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

with protocol-agnostic access to data, hence its name

“CDA” is Cx Data Access.

• External access to channels is provided by “data fron-

tends” on the server side.

• The server itself is a library.

• Configuration file readers are plugins too.

• Screen instruments in GUI applications are imple-

mented as plugins, thus making generic “screen man-

ager” application extensible and capable of performing

complicated control tasks.

cda (Cx Data Access)

cx
v

2
cx

v
ca

s

in
sr

v

cxsd_hw

cx v
ca

s

Client

Data−access plugins
at client side

Data−access frontends
at server side

. . .

. . .

Protocol−agnostic
data access API

In−server
data access API

Device drivers

Server library

Figure 2: CXv4 core modular structure.

Inter-driver Data Access

Modularity of data-access protocols allowed us to create

an insrv:: “loopback” protocol for access from inside

the CX-server. It is used by “virtual hardware” drivers to

connect to underlying hardware. As access is performed via

standard cda API, those virtual devices can be seamlessly

pointed to hardware in other servers.

Data types

CXv4 supports integer (8-, 16, 32 and 64-bit), floating

point (single- and double-precision) and character (byte and

32-bit (Unicode)) channels. Type and size conversion is

performed automatically when required.

Any channel can be either a scalar or a vector. Scalars

are channels “of fixed length of 1”, while vectors’ content

can vary in length from 0 to a specified maximum. Charac-

ter vectors (used for text strings) are treated specially: an

additional NUL character is added at the end of data, thus

simplifying use in C programs.

Python binding

A high-performance Python binding was created for CX.

It lowers the barrier of entry into CX programming and

greatly simplifies development of complex software, such

as machine mode manipulation, automatic control and data

analysis applications.

Hostnameless Addressing

CX channel naming convention supposes hierarchical

names, consisting of level names separated with dots; such

as

Facility.System.Element.Channel

Fully-qualified CX channel references have the following

format:

[PROTO::]HOST:N.path.to.channel

i.e., an optional protocol spec followed by hostname with

server instance number and, finally, a channel name inside

the server.

Thus, one has to know which host/server a channel be-

longs to. This is definitely an extra burden, since this infor-

mation reflects only low-level technical decisions and can

change with time.

To overcome this problem, CX now allows a “hostname-

less” addressing. If only a channel name is specified — e.g.,

just

path.to.channel

then CX data access layer performs a search to locate a

containing server for requested channel. If later the channel

moves to another server, resolving is repeated invisibly to

an application.

Besides convenience, this feature gives ability to host adja-

cent points of hierarchy on different servers and to augment

existing (hardware) hierarchies with additional calculated

“artificial” channels.

For example, linac’s QL27 power supply is controlled

by canhw:11 server and, thus, its channels have full

names canhw:11.QL27.NNN. And there’s a separate

server softhw:1 for software-generated channels, such as

QL27.failure (whose value is calculated based on several

heuristics). With “hostnameless” addressing these servers

can be maintained independently, however, their channels

are still named adjacently.

Cpoints

Hardware channel names in CX consist of 2 parts: de-

vice instance name and a channel name inside device. E.g.,

ctl_ql12.adc5 means “ADC channel 5 in QL12 supply’s

controller”. These names are created automatically upon

device instantiation1.

However, CX has a mechanism named cpoints2, some-

what similar to Unix symlinks, which allows us to extend

hardware namespace and create virtual hierarchies of chan-

nels.

In a simplest form like

cpoint ic.mag.QL27.set QL27.Iset

it creates an alias name. A whole device can also be

aliased. Intermediate cpoint-“containers” (directories) are

created automatically when utilized.

1 CX behaves similarly to Algol/C-like programming languages: when a

struct-typed variable is instantiated, all of its fields are created.
2 The term “cpoint” is an abbreviation of “control point”.

THPSC07 Proceedings of RuPAC2018, Protvino, Russia

ISBN 978-3-95450-197-7
418Co

py
rig

ht
©

20
18

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Control and diagnostic systems

As virtual hierarchy has precedence over hardware one,

it is possible to augment, replace and “redirect” hardware

channels.

CONFIGURATION

Prior CX versions included a very simple configuration

mechanism: just a textfile with a list of devices to be con-

trolled, with per-device parameters (such as bus addresses).

However, as large experimental facilities (such as VEPP-

5) require lots of configuration information of various kind,

several attempts to create a generic centralized software and

hardware configuration tool were made [4,5]. Unfortunately,

none of these had gained reception. Main problem is that

time expenditure to master and maintain these systems is

higher than gained time savings (at least at facility of VEPP-5

scale). Thus, another solution was required.

First, CX configuration language was extended. Now it

includes a notion of “device types” (which are first declared

and than instantiated) and an instrument to create extensive

virtual hierarchies of channels (see section “Cpoints” above).

On the one hand, configuration textfiles are piped via M4 pre-

processor, which gives rich programming abilities. On the

other hand, core syntax is simple enough for configuration

files to be software-generated (from some other sources).

Second, a VEPP-5-specific software was created. It in-

cludes a database with high-level information and configura-

tion tools [6]. This software also includes a machine mode

manipulation system, automatic control and data analysis

programs.

Third, CX-server supports artificial “mailbox” channels,

which aren’t connected to any hardware and just hold val-

ues written, notifying subscribed clients about modifications.

CX operates just as a software data bus here, allowing system

configuration and management software intercommunica-

tion via the same way they access hardrare.

PROSPECTIVE DEVELOPMENT

First, a per-channel locking mechanism is being developed

to enable exclusive access to sensitive controls and atomic

modification of groups of related channels.

Second, cda_d_epics and cda_d_tango data access

plugins are planned for CX client applications to be able to

directly access respective “foreign” control systems used at

peer BINP facilities.

Similarly, cxsd_fe_epics and cxsd_fe_tango fron-

tends are being considered. This would allow peers a “na-

tive” access to VEPP-5 control system. Plus, these frontends

would enable to use CSS and Taurus for CX.

CONCLUSION

In the course of 2015–2018 VEPP-5 Injection Complex

control system was successfully upgraded. New base soft-

ware allows easy data interchange with VEPP-4 and VEPP-

2000 colliders.

A high-performance Python binding was created. System

configuration and whole-facility mode saving and restoring

software is Python-based. Some operator applications are

also written in Python now, and visual programming tools

for Python are being developed.

REFERENCES

[1] D. Berkaev et al., “VEPP-5 Injection Complex: Two

Colliders Operation Experience”, Proc. IPAC2017,

Copenhagen, Denmark, May 2017, paper WEPIK026,

http://accelconf.web.cern.ch/AccelConf/

ipac2017/papers/wepik026.pdf

[2] D. Bolkhovityanov, “VEPP-5 Injection Complex Con-

trol System Software”, 2007, Ph.D. thesis (in russian)

http://www.inp.nsk.su/~bolkhov/publs/bolkhov_

phd_final.pdf

[3] D. Bolkhovityanov et al., “CXv4, a Modular Control Sys-

tem”, Proc. ICALEPCS2015, Melbourne, Australia, October

2015, paper WEPGF093, http://accelconf.web.cern.

ch/AccelConf/ICALEPCS2015/papers/wepgf093.pdf

[4] A. Makeev et al., “Centralized Software and Hardware

Configuration Tool for Large and Small Experimental

Physics Facilities”, Proc. ICALEPCS2013, San Fran-

cisco, CA, USA, October 2013, paper TUPPC022,

http://accelconf.web.cern.ch/AccelConf/

ICALEPCS2013/papers/tuppc022.pdf

[5] M.A. Ilina, P.B. Cheblakov, “Applying Ontologi-

cal Approach to Storing Configuration Data”, Proc.

ICALEPCS2017, Barcelona, Spain, October 2017, pa-

per THMPL05, http://accelconf.web.cern.ch/

AccelConf/icalepcs2017/papers/thmpl05.pdf

[6] F. Emanov et al., “Upgrade of Application-Level Software of

VEPP-5 Injection Complex”, this conference, paper THPSC12.

Proceedings of RuPAC2018, Protvino, Russia THPSC07

Control and diagnostic systems
ISBN 978-3-95450-197-7

419 Co
py

rig
ht

©
20

18
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

