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Abstract
Starting from the Vlasov-Maxwell equations, an exact

relativistic hydrodynamic closure for a special type of water-
bag distributions satisfying the Vlasov equation has been
derived. In the case of magnetized quasi-neutral plasma, the
hydrodynamic substitution has been used to derive the hy-
drodynamic equations for the plasma density and current ve-
locity, coupled to the wave equations for the self-consistent
electromagnetic fields. Based on the method of multiple
scales, a system comprising a vector nonlinear Schrodinger
equation for the transverse envelopes of the self-consistent
plasma wakefield, coupled to a scalar nonlinear Schrodinger
equation for the electron current velocity envelope for free
plasma, has been derived. In the case of magnetized plasma,
it has been shown that the whistler wave envelopes of the
three basic modes satisfy a system of three coupled nonlin-
ear Schrodinger equations. Numerical examples for typical
plasma parameters have been presented. It has been shown
that in the case of magnetized plasma, the whistler waves
facilitate the transverse confinement considerably.

INTRODUCTION
In the mid 1950s, Budker and Veksler [1, 2] proposed uti-

lizing plasma collective fields to accelerate charged particles
more compactly. Twenty years later this idea was further de-
veloped by the late John Dawson and his collaborators [3,4].
Several mechanisms to generate large amplitude electron
plasma waves are presently put into practice. The first one
dates back to 1956, when V.I. Veksler’s [2] suggestion of
acceleration by means of collective fields was further elab-
orated by G.I. Budker [1], who proposed the concept of a
self-stabilized ring beam. In recent years the beat wave mech-
anism [5], the laser-driven wakefield generation, and last but
not least excitation of plasma wave structures by charged
particle beams propagating in the plasma medium have at-
tracted much attention. More recent numerical simulations
and experimental investigations show that ultra-intense laser-
matter interactions and laser-induced plasma wakefields can
be used for new type of laser-driven positron sources [6] and
acceleration of ion beams [7] with narrow energy spread.

Whistler waves are one of the first plasma waves observed
and studied for more than a century. The first analytical
approach to the linear dispersion properties of whistler waves
is the one suggested by Appleton [8] and Hartree [9], who
proposed the famous Appleton-Hartree dispersion equation.
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NP) Phase II, co-financed by the Romanian Government and the European
Union through the European Regional Development Fund.
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While the linear stability properties of the electromagnetic
waves in the whistler mode are relatively well studied [10,11],
there is a serious gap in the understanding of their nonlinear
behaviour. The general theory of nonlinear waves in a cold,
collisionless relativistic plasma was initiated by Akhiezer
and Polovin [12]. The study of the nonlinear behaviour of
whistler waves has been initiated by Taniuti and Washimi
[13], who obtained a nonlinear Schrodinger equation for the
slowly varying wave amplitude.

We first review and summarize some basic properties of
laser driven plasmas. Then, following Refs. 14 and 15, we
reduce the Vlasov-Maxwell system to an exact closure of
relativistic warm fluid dynamic equations for the plasma
species, which are coupled to the wave equations for the
radiation field. Using the method of multiple scales, we
outline how a vector nonlinear Schrodinger equation de-
scribing the evolution of the slowly varying amplitude of the
transverse plasma wakefield, coupled to a scalar nonlinear
Schrodinger equation for the amplitude of the electron cur-
rent velocity can be derived. Next, the derivation of the cold
hydrodynamic picture by using the so-called hydrodynamic
substitution has been outlined. We then obtain a system
of coupled nonlinear Schrodinger equation describing the
evolution of the slowly varying amplitudes of the three basic
whistler modes. The analysis of an approximate traveling
wave solution to the coupled nonlinear Schrodinger equa-
tions in both the relativistic and the non relativistic case
concludes Section 4. Finally, we draw some conclusions in
the last Section.

BASIC PROPERTIES OF LASER
PLASMAS

To gain insight into the basic properties of laser induced
plasmas, we consider a simple non-relativistic model

∂tn + ∂x(nvx) = 0, (1)

∂tv + vx∂xv = −
e
m
[E + ex(v · ∂xA) − vx∂xA], (2)

∂xEx = −
e
ε0

(
n − Zni

)
. (3)

This model describes the plasma response to an external per-
turbation propagating longitudinally along the x-axis with a
unit direction vector ex and specified by the electromagnetic
vector potential A. Here, n and v are the electron number
density and the current velocity, respectively, while E is the
self-consistent electric field. In addition, m and e are the
rest mass and the charge of the electron, respectively, ε0 is
the permittivity of free space and finally, Z and ni are the
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mean charge number, and the number density of the back-
ground ions in the plasma. Neglecting the time variation of
the transverse components v⊥ of the current velocity in Eq.
(2), it follows that

v⊥ =
eA⊥

m
. (4)

This allows us to automatically rewrite Eq. (2) as

∂tvx +
1
2
∂xv

2
x = −

eEx

m
−

e2

2m2 ∂x A2, (5)

where A2 = A2
y + A2

z . The second term on the right-hand-
side of Eq. (5) represents the so-called ponderomotive force.
Let us now apply the traveling wave approximation to Eqs.
(1), (3) and (5). Integrating once the resultant Eqs. (1) and
(5) with due account of the initial conditions n(0) = n0,
vx(0) = 0 and ϕ(0) = 0, we obtain

vx = u
(
1 −

n0
n

)
, v2

x −2uvx −
2eϕ
m
+

e2

m2

(
A2 − A2

0

)
= 0,
(6)

where A0 =
mca0

e
(a0 being the so-called the laser pa-

rameter), and ϕ is the scalar electromagnetic potential(
Ex = −∂ξϕ

)
. Solving the second of Eqs. (6) for vx and

substituting the result into the first one, we obtain an expres-
sion for n/n0. The latter substituted into Eq. (3) yields a
single equation for the scalar potential

∂2
ξϕ =

en0
ε0

{[
1 +

2eϕ
mu2 −

e2

m2u2

(
A2 − A2

0

)]−1/2

− 1

}
. (7)

Expanding the square root on the right-hand-side of Eq. (7),
we obtain an equation for the electric field(

∂2
ξ + k2

e

)
Ex = −

ek2
e

2m
∂ξ A2, ke =

ωe

u
, (8)

where ω2
e = e2n0/(mε0) is the electron plasma frequency

and ξ = x − ut is a new traveling wave variable. For
a sufficiently short driving laser pulse of the form A2 =(mca0

e

)2
exp

(
−
ξ2

σ2
l

)
, the driver [the source term in Eq. (8)]

is resonant for keσl =
√

2. The evolution of the longitudinal
electric field Ex for the resonant case is shown in Figure 1.
For typical plasma number densities of the order of 1021 m−3

and intensity of the driving the laser pulse a0 = 1.3, quite
impressive acceleration gradients of the order of several
gigavolts per meter can be achieved.

NONLINEAR WAVES AND COHERENT
STRUCTURES IN QUASI-NEUTRAL

PLASMAS
Theoretical Model and Basic Equations

We consider a quasi-neutral plasma in an external electro-
magnetic field depending on the dimensionless coordinates
x = (x, y, s) and the dimensionless time t. The nonlinear

10 20 30 40
keξ

-2

-1

1

2

Ex [GV/m]

Figure 1: Evolution of the longitudinal electric field Ex in the
resonant case

(
keσl =

√
2
)
. The amplitude of the driving

laser pulse is a0 = 1.3, while the electron plasma frequency
is taken to be ωe ∼ 1.8 THz.

Vlasov equation for the distribution function fa(x, p; t) of
particle species a (electrons and ions) can be written as [14]

∂t fa +
p⊥ − ZaA⊥

µaγa
· ∇⊥ fa +

ps
µaγa

∂s fa

+(ZaF − µa∂sγa)∂ps fa = 0. (9)

Here µa = ma/m is the mass aspect ratio with respect to
the electron mass and Za is the charge state of species a
(qa = eZa). Since the transverse canonical momenta are
integrals of motion (no dependence on the transverse coor-
dinates by assumption), Eq. (9) reduces to

∂tFa +
ps
µaγa

∂sFa + (ZaF − µa∂sγa)∂ps Fa = 0. (10)

Consider now a class of water bag distributions solving
exactly the one-dimensional Vlasov equation (10), which is
given by the expression [14–17]

Fa(s, ps; t) = Ca
{
Θ

[
ps − p(−)a (s, t)

]
−Θ

[
ps − p(+)a (s, t)

]}
, (11)

where Θ(z) is the well known Heaviside step function. Fol-
lowing Ref. 15, we introduce the hydrodynamic variables na,
Va and Γa as certain combinations of the boundary curves
p(±)a (s, t). The important quantity Γa can be written as

Γa =

√√√√√√√ 1 +
Z2
a

µ2
a

A2(
1 − V2

a

) (
1 − 2v2

aTn2
a

) , (12)

where v2
aT = 1/

(
8C2

a

)
is the thermal speed squared of the

plasma species of the type a. The completion of the macro-
scopic fluid description can be performed in a similar to
Ref. 15 manner by expressing the source terms entering the
corresponding wave equations for the electromagnetic poten-
tials as functions of na, Va and Γa. Thus, the hydrodynamic
equations for each plasma species a can be written as

∂t (naΓa) + ∂s(naΓaVa) = 0, (13)

∂t (VaΓa) + ∂sΓa = Fa = −
Za

µa
(∂sΦ + ∂t As), (14)
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�Φ = −
1

ne0

∑
a

ZanaΓa, (15)

�As = −
1

ne0

∑
a

ZanaΓaVa, (16)

�A⊥ =
A⊥
ne0

∑
a

Z2
ana

(
1 +

2
3
v2
aTn2

a

)
+ �Ae . (17)

For the case of constant phase-space density distribution
specified by Eq. (11), the macroscopic fluid description con-
sisting of Eqs. (13) – (17), is fully equivalent to the nonlinear
Vlasov equation (10) supplemented by the corresponding
wave equations for the self fields.

Nonlinear Waves in Laser Plasmas
Ions comprise a heavy plasma background, so that their

effect on the dynamics of the plasma wakefield, triggered
by the external pumping electromagnetic field can be ne-
glected. The system of hydrodynamic and wave equations
to be analyzed in the sequel can be written as follows [14]

∂t (nΓ) + ∂s(nΓV) = 0, (18)

�
[
∂2
t (ΓV) + ∂t∂sΓ

]
= −�(nΓV), (19)

�A⊥ = n
(
1 +

2
3
v2
Tn2

)
A⊥. (20)

According to the standard procedure of the multiple scales
method [14, 16] applied to the system of equations (18) –
(20), all variables n, V and A⊥ are expanded in a formal small
parameter, which at the end of all calculations is set back to
unity. Then, the corresponding perturbation equations are
solved, such that secular terms are eliminated order by order.
As a result, the evolution dynamics of the hydrodynamic and
the field variables is being split on different spatial and time
scales – fast ones involving rapid wave oscillations and slow
scales on which coherent motion of certain wave amplitudes
occurs. Omitting details [14], we can write

V(s; t) = B(s; t)eiϕ(s;t) + B∗(s; t)e−iϕ(s;t), (21)

A⊥(s; t) = 𝒜(s; t)eiψ(s;t) +𝒜∗(s; t)e−iψ(s;t), (22)

where
ϕ = ks −Ωt, ψ = ks − ωt, (23)

are the phases of the two basic waves propagating in the
longitudinal direction. For a generic wave number k, the
wave frequencies are given by

Ω =

√
1 + 2k2v2

T ω =

√
1 + k2 +

2
3
v2
T . (24)

The key result [14] is that the wave amplitudes B and
𝒜 = Axex +Ayey satisfy the equations

i∂t𝒜 + ivω∂s𝒜 = −
1
2

dvω
dk

∂2
s𝒜 + ΓaaA2𝒜∗ + Γab |B|2𝒜,

(25)

i∂tB + ivΩ∂sB = −
1
2

dvΩ
dk

∂2
sB + Γba |A|

2B + Γbb |B|
2B.

(26)
The explicit expressions for the dispersion and coupling
coefficients can be found in Ref. 14. Equations (25) and
(26) comprise a system of a nonlinear vector Schrodinger
equations for 𝒜 coupled to a scalar nonlinear Schrodinger
equation for B. They describe the evolution of the slowly
varying amplitudes of the generated transverse plasma wake-
field and the current velocity of the plasma electrons.

It can be shown [14] that

Ay = AxC, (27)

where in the simplest case C is a real constant or a purely
imaginary (C = ±i) one. The subcase C = 0 corresponds
to linear wave polarization, while C = ±i corresponds to
circular wave polarization.

Numerical Results and Discussion
We analyze here circularly polarized plasma waves, in

which case Eqs. (25) and (26) can be written as

i∂tAx + ivω∂sAx = −
1
2

dvω
dk

∂2
sAx + Γab |B|

2Ax, (28)

i∂tB + ivΩ∂sB = −
1
2

dvΩ
dk

∂2
sB + 2Γba |Ax |

2B + Γbb |B|
2B.

(29)
The case of linear wave polarization can be treated in a sim-
ilar manner. We shall describe now traveling wave solutions
to Eqs. (28) and (29), which are generally sought through
the standard ansatz

Ax(ξ, η) = ei(µξ+ν1η)P(z), B(ξ, η) = ei(µξ+ν2η)Q(z),
(30)

where ξ and η are new variables, z = η − uξ is the traveling
wave independent variable, while P and Q are yet unknown
complex (in general) traveling wave amplitudes [14]. The
quantities µ, ν1,2 and the traveling wave velocity u are con-
stants to be determined additionally.

Figure 2: Evolution of the traveling wave amplitude P for
the case k = 1.543613, v2

T = 0.1 and µ = −1.0.

The resulting equations for P and Q have been solved by
the method of formal series of Dubois-Violette [14,16]. The
solution of the corresponding equation for P (coupled to
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that for Q) is visualized in Figure 2. A careful inspection
of the results presented in Figure 2 shows that the traveling
wave solution of the coupled nonlinear Schrodinger equa-
tions represents a damping quasi-periodic wave [14]. The
damping rate of this wave is proportional to 1/η, and on
a scale of 3 ∼ 4 c/ωe it can be considered as practically
completely subdued.

NONLINEAR WAVES AND COHERENT
STRUCTURES IN MAGNETIZED

QUASI-NEUTRAL PLASMAS
Kinetic and Hydrodynamic Picture

We analyze now the properties of quasi-neutral plasma
immersed in an external constant magnetic field B0 = B0ex .
The dimensionless Vlasov-Maxwell system is written as

∂t fa+v ·∇ fa−νaex ×v ·∇p fa+Za(E + v × B) ·∇p fa = 0,
(31)

�A = −
∑
a

λa

∫
d3pv fa(x, p; t), (32)

�ϕ = −
∑
a

λa

∫
d3p fa(x, p; t), (33)

∂tE = ∇(∇ · A) − ∂2
t A, B = ∇ × A. (34)

The quantity λa in Eqs. (32) and (33) is defined as

λa =
Zana

ne
, (35)

In addition, νa = µaωa/ωe, ωa = qaB0/ma, where ωa is
the cyclotron frequency of particles of type a, and νa is the
corresponding scaled cyclotron frequency with respect to
the electron plasma frequency.

Consider the so-called hydrodynamic substitution [18,19]

fa(x, p; t) = %a(x; t)δ3
[
p −

1
µa
γa(x; t)va(x; t)

]
. (36)

Substituting the above expression (36) into the Vlasov-
Maxwell system (31) – (33), we obtain the cold hydrody-
namic equations

∂t %a + ∇ · (%ava) = 0, (37)

∂t (γava)+ va ·∇(γava)+ ω̄aex × va = µaZa(E + va × B),
(38)

supplemented with the equations for the self-fields

�A = −
∑
a

λa %ava, �ϕ = −
∑
a

λa %a, (39)

where the notation ω̄a = ωa/ωe has been introduced.
The frequency of the electromagnetic wave excited in

the magnetized plasma is as a rule much higher than the
(relative) ion-cyclotron frequency ω̄i . Since µa � 1 for
a , e (formally, µe = 1), we can neglect the ion motion and
take into account the contribution coming from the much

lighter electrons only. We shall consider a special case of
plasma wave anisotropy, implying that the longitudinal and
the transverse plasma waves depend on the longitudinal (in
the direction of the applied external magnetic field B0) x co-
ordinate only. Although such assumption is not essential (for
details see e.g. Ref. 20), it simplifies the analytic treatment
considerably. It is convenient to complexify the transverse
variables by introducing new notations V = vy + ivz and
A = Ay + iAz and rewrite Eqs. (37) – (39) accordingly [19].

Nonlinear Waves in Magnetized Plasmas
It can be verified [19] that for typical values of the electron-

cyclotron frequency ω̄e the dispersion equation for the
whistler waves possesses three distinct real roots ωn(k),
where n = 1, 2, 3. Thus, for the transverse part of the self-
consistent electromagnetic vector potential and the current
velocity, we obtain

A =

3∑
n=1
Cneiψn, V =

3∑
n=1

(
ω2
n − k2

)
Cneiψn, (40)

where ψn = k x − ωnt. Separating real from imaginary part
in Eq. (40), it is straightforward to verify that whistler waves
are circularly polarized and this property expands on all
other transverse field quantities and hydrodynamic variables.
It can be shown [19] that the amplitudes Cn satisfy a system
of three coupled nonlinear Schrodinger equations

i∂tCn + ivgn∂xCn = −
1
2

dvgn
dk

∂2
xCn

+
∑
m

ΠmnCn |Cm |
2 +

∑
m,n

ΓmnCn |Cm |
2, (41)

where the explicit form of the dispersion and the coupling
coefficients can be found in Ref. 19. Note that terms with
m = n are excluded from the second sum on the right-hand-
side of Eq. (41). This implies that the matrix of coupling
coefficients Γmn represents a sort of a selection rule, accord-
ing to which a generic mode n cannot couple with itself. The
first term (not present in the non relativistic case) involving
the coupling matrix Πmn allows self-coupling and is entirely
due to the relativistic character of the motion.

Numerical Results and Discussion
Straightforward evaluation of the dispersion coefficients

v′gn = dvgn/dk shows that in a relatively wide range of
plasma parameters one of them, say v′

g2 is several orders of
magnitude smaller than the other two, and therefore can be
neglected. The equation for C2 possesses a simple solution of
the form C2 = g2e−iΨ(x;t), where g2 is a constant, while the
phase Ψ can be determined, provided C1 and C3 are known.
This implies that our initial system (41) can be reduced
to a simpler system of two coupled nonlinear Schrodinger
equations [19]. Similar to the preceding Section, we seek
traveling wave solutions through the standard ansatz

C1 = ei(µ1ξ+µ2η)P1(η), C3 = eiµ3(ξ+η)P3(η). (42)
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The resulting system of nonlinearly coupled Duffing equa-
tions for P1 and P3 are solved by employing the method of
formal series of Dubois-Violette [16, 19]. Figures 3 and 4

-10

-5

0

5

Figure 3: Evolution of the fully relativistic traveling wave
amplitude P1 for the case, where ω̄e = 1 k = 1, µ1 = −1,
µ3 = 1 and g2 = 0.

-6 -4 -2 2 4 6
η

-10

-5

5

P1

Figure 4: Evolution of the fully relativistic traveling wave
amplitude P1 as a function of η for the case, where ω̄e = 1
k = 1, µ1 = −1, µ3 = 1 and g2 = 0.

describe the fully relativistic case, for which the contribution
of the mode self-coupling terms Πmm has been taken into ac-
count. The traveling wave solution represents 1/η-damped
quasi-periodic oscillations of the whistler mode amplitudes
fading away with respect to the travelling wave variable η.
The solitary-like wave crests with respect to the spatial vari-
able for both P1 and P3 are almost monolithic structures,
which are stable in time and are symmetrically located on
both sides of the line x = vg3t. Note also that, in both the non
relativistic and the fully relativistic case, the whistler mode
amplitudes P1 and P3 at a fixed location in the longitudinal
direction x decay rapidly in time [19]. According to Eq. (40),
the plasma response to the induced whistler waves consists
in transverse velocity redistribution, which follows exactly
the nonlinear behaviour of the whistlers. This means that
the electron current flow is well confined and localized in
the transverse direction, such that on a scale 3 ∼ 4 c/ωe the
tails of the electron density distribution can be considered
as practically completely subdued.

CONCLUDING REMARKS
The principle of generating super-strong electric accel-

erating fields has been demonstrated using a simple and

illustrative physical model. An exact relativistic hydrody-
namic closure of equations describing the dynamics of vari-
ous species in a quasi-neutral plasma has been obtained. As
expected, the warm fluid dynamic equations are invariant
under Lorentz transformation. Further, a system comprising
a vector nonlinear Schrodinger equation for the transverse
envelopes of the self-consistent plasma wakefield coupled
to a scalar nonlinear Schrodinger equation for the electron
current velocity envelope has been derived. The numerical
results presented in Figure 2 show that the traveling wave
solution of the coupled nonlinear Schrodinger equations rep-
resents a damping quasi-periodic wave, which on a scale
of 3 ∼ 4 c/ωe can be considered as practically completely
subdued. The analysis performed here clearly demonstrates
generation of nonlinear electromagnetic waves driven by an
external radiation source. These waves possess a solitary
(shock) and multipeak structure and are possibly related to re-
cent experiments on the so-called "shock acceleration" [21].
The ELI-NP facility will provide focused laser beams with
intensities above 1025 W/m2. A number of dedicated ex-
periments [22] has been proposed, which could confirm the
relevance of the theory developed here.

Utilizing a technique known as the hydrodynamic sub-
stitution, a relativistic hydrodynamic system of equations
describing the dynamics of various species in a cold quasi-
neutral plasma immersed in an external solenoidal magnetic
field has been obtained. Based on the method of multiple
scales, a further reduction of the macroscopic fluid and the
wave equations for the self-consistent electromagnetic fields
has been performed. As a result, a system comprising three
coupled nonlinear Schrodinger equation for the three basic
whistler modes has been derived. An intriguing feature of
our description is that whistler waves do not perturb the
initial uniform density distribution of plasma electrons. The
plasma response to the induced whistler waves consists in
transverse velocity redistribution, which follows exactly the
behaviour of the whistlers [12]. The electron current flow is
well localized in the transverse direction, such that on a spa-
tial scale of 3 ∼ 4 c/ωe the tails of the electron density dis-
tribution can be considered as practically completely faded
away. This property may have an important application for
transverse focusing of charged particle beams in future laser
plasma accelerators. According to the adopted geometry the
direction of the laser light propagation coincides with the
direction of the external solenoidal field. After the charged
particles are accelerated in a section free of magnetic field,
the divergent bunch enters the solenoid, where it is focused
by the nonlinear transverse whistler waves.
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