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Abstract

In this paper we consider some integral-differential model

of the dynamics of charged particles with smoothed inter-

action. This model is used in solving various problems

of optimization of the dynamics of intense beams. Using

the proposed model in optimization problems allows you

to find analytical expressions for the functional variation

that characterize the dynamics of the particles, and then

consruct methods of directed search of extremum.

INTRODUCTION

Problems of the analysis of charged particles dynamics in

view of their interaction have long been the focus of many

researchers. One of the basic mathematical models describ-

ing the dynamics of the interaction of particles is the math-

ematical model proposed by A.A.Vlasov [1]. Vlasov equa-

tion widely used to solve a variety of application problems.

Of particular interest is the finding of the self-consistent

distributions to a beam of charged particles in an electro-

magnetic field [2-4,15]. The problems of existence and

uniqueness of solutions of the Vlasov equation considered

in [5,6]. It should be noted that in the numerical simulation

of the dynamics of intense beams mainly smoothed inter-

action of charged particles is used [7-10]. In this paper we

consider some integral-differential model of the dynamics

of charged particles with smoothed interaction. This model

is used in solving various problems of optimization of the

dynamics of intense beams. Using the proposed model in

optimization problems allows you to find analytical expres-

sions for the functional variation that characterize the dy-

namics of the particles, and then construct methods of di-

rected search of extremum [11-14]. The paper describes

an example of the construction of such integral-differential

model for the dynamics of charged particles.

INTEGRO-DIFFERENTIAL MODEL

Suppose that the dynamics of the beam of interacting

charged particles is described by the system of integro-

differential equations

dx

dt
= f(t, x), (1)

∂ρ

∂t
+

∂ρ

∂x
f(t, x) + ρ divxf(t, x) = 0, (2)

f(t, x)=f1(t, x)+

∫

Mt

ρ(t, y)f2(t, x, y) dy (3)
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with initial conditions

x(t0, x0) = x0 ∈ M0, ρ(t0, x) = ρ0(x). (4)

Here the nonempty open bounded set M0 ⊂ Rn; the real-

valued nonnegative continuous function ρ0(x) in M0 spec-

ifies a density of particle distribution in the phase space

at the initial time t0; the vector-function f1(t, x) is deter-

mined by the external electromagnetic fields acting on par-

ticles; the vector-function f2(t, x, y) is determined by con-

sidering the particle interaction. Solution of (1)-(4) rep-

resent a set of vector-functions x(t, x0) that determine the

bundle of trajectories emanating from the set M0. Note

that Mt = {x(t, x0) : x0 ∈ M0}) and ρ(t, x(t, x0)) is

the density of particle distribution along these trajectories.

Equality (2) means that

∫

Mt

ρ(t, y)f2(t, x, y) dy=

∫

M0

ρ0(y0)f2(t, x, x(t, y0) dy0,

that is, we consider the system of integro-differential equa-

tions

dx(t, x0)

dt
= f(t, x(t, x0)) = f1(t, x(t, x0)) +
∫

M0

ρ0(y0)f2(t, x(t, x0), x(t, y0)dy0 (5)

with initial conditions

x(t0, x0) = x0 ∈ M0. (6)

Suppose that the vector real functions f1(t, x) and

f2(t, x, y) are defined and continuous on the sets (α, β)×Ω
and (α, β) × Ω × Ω respectively, where (α, β) ∈ R1, and

Ω is a region in Rn.

Denote Ra = {t : |t− t0| ≤ a}, M b = {x : ||x−x0|| ≤
b, x0 ∈ M0}, R1 = Ra ×M b, R2 = Ra ×M b ×M b.

We have the following theorem of existence and unique-

ness.

Theorem Suppose the following conditions are satisfied:

1) the nonnegative function ρ0(x) ∈ C(M0) is given:

ρ0(x) ̸= 0 for x ∈ M0, and
∫

M0

ρ0(x)dx = ρ < +∞;

2) numbers a > 0 and b > 0 are given, such that Ra ⊂
(α, β), M b ⊂ Ω;

3) M1= sup
(t,x)∈R1

||f1(t, x)||, M2= sup
(t,x,y)∈R2

||f2(t, x, y)||;

4) the vector-functions f1((t, x) and f2((t, x, y) satisfy the

Lipschitz condition in the variables x and x, y with constant

L1 and L2 on the sets R1 and R2, respectively.
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Then there exists a unique vector-function x(t, x0) that is

defined and continuously differentiable with respect to t; it

continuous in x0 on Rh×M0 and satisfies equation (5) and

initial conditions x(t0, x0) = x0. Here h = min(a, b/M)
and M = M1 + ρM2.

The proof of this theorem can be found in [9].

Let us assume that the vector-functions f1((t, x) and

f2((t, x, y) are continuously differentiable with respect to

x and y. Then the solution x(t, x0) of system (5) is con-

tinuously differentiable with respect to x0. This assertion

is proved just as the continuous differentiability of solu-

tions for the systems of ordinary differential equations is

proved with respect to initial data. In this case the matrix

∂x(t, x0)/∂x0 satisfies the equation

d

dt

∂x(t, x0)

∂x0
=

∂f(t, x(t, x0))

∂x

∂x(t, x0)

∂x0
=

(

∂f1(t, x(t, x0))

∂x
+

∫

Mt

∂f2(t, x(t, x0), yt)

∂x
ρ(t, yt) dyt

)

∂x(t, x0)

∂x0

The existence and uniqueness of the solution ρ(t, x) of

equation (2) follows [9] from the equality

dρ(t, x(t, x0))

dt
= −ρ(t, x(t, x0))divxf(t, x(t, x0))

and continuous differentiability of x(t, x0) to the initial

data.

Problem (1)-(3) becomes the problem of controlling an

ensemble of trajectories [9], if the function f1(t, x) de-

pends on the control u (as a rule, the parameters of the

accelerator), that is f1 = f1(t, x, u), x = x(t, x0, u), and

Mt = Mt,u = {xt = x(t, x0, u) : x0 ∈ M0}. The quality

of the beam dynamics of charged particles may be evalu-

ated by functional such as

I(u) =

T
∫

0

∫

Mt,u

ϕ(t, xt, ρ(t, xt)) dxtdt+

∫

MT,u

g(xT , ρ(T, xT )) dxT , (7)

where ϕ(t, x, ρ) and g(x, ρ) are nonnegative continuously

differentiable in its arguments functions. The control u we

choose minimizing the functional (7). In the case of con-

tinuous differentiable functions f1, f2, divxf1, divxf2 it is

possible to obtain an analytical expression [9] for the vari-

ation of the functional and thus construct directed methods

to minimize it.

Here is an example of a model of the form (5) with

smooth interaction, that is, with continuously differentiable

functions f2(t, x, y), divxf2. This example shows that the

methods of large particles can be formulated in integro-

differential form.

INTEGRO-DIFFERENTIAL DISK

INTERACTION MODEL

In studies of the longitudinal motion of charged particles in

axially symmetric external electromagnetic fields the parti-

cle beam is often seen as a set of N disks of radius R. Each

disk moves at a time t along the axis z accelerating struc-

ture under the action of electromagnetic field generated in

the accelerator and under the action of the field created by

the remaining disks. The equations of motion i-th disc in

dimensionless coordinates are

dξi
dτ

=
pi

√

1 + p2i
, (8)

dpi
dτ

= α(τ, ξi) + Fi. (9)

Here pi = βi/
√

1− β2
i is the i-th particle momentum;

βi = vi/c; vi is the velocity of the i-th disk along the axis

ξ; Fi =
∑N

J=1 Fij , where Fij is the force with which the

j-th disc acts on the I-th disk. In calculating the force of

one disk on the other along the ξ axis, we assume that the

motion of the disk is uniform and the potential of any disk

circle is given [7] by equality

U(r, z)=
R0

ϵ0a

∞
∑

i=1

J0(µiR0/a)J0(µir/a)

µiJ2
1 (µi)

e−µi|z|/a. (10)

Here R0 is the radius of a charged circle; a is the radius

of the tube; J0 and J1 are the Bessel functions; µi are the

roots of the function J0; r is the distance of the observation

point from the tube axis, z is the longitudinal coordinate of

the point at which the potential is calculated.

Expression (10) is valid for each circle in its own system

of coordinates. That is, we need to calculate −∂U/∂ξ, to

integrate with respect to the disk thickness and radius, and

then to pass to a stationary system of coordinates.

For thin disks, the force with which the j-th thin disk

acts on the i-th thin disk

f(ξi − ξj) =
2e2

πR2ϵ0
sign(ξi − ξj)×

∞
∑

i=1

(

J1(µiR/a)

µiJ1(µi)

)2

e−µiλ|z2−z1|/a.

is the discontinuous function at ξi = ξj , but for disks of

finite thickness 2d the function F (ξi − ξj) is continuously

differentiable [9] (smoothed interaction). Here ξi and ξj
are the coordinates of the centers of the thick discs in the

stationary coordinate system.

In the simulation of particle dynamics taking into ac-

count the relativistic effects F = F (ξi − ξj , pj).
Thus, Fi in the equation (9) for the phase coordinate pi

has the form

Fi =
N
∑

j=1

F (ξi − ξj , pj)
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Let points {(ξi0, pi0)}
N
i=1 are distributed in the

set M0 with partial density ρ0(ξ, p), and let

(ξi(τ, ξi0, pi0), pi(τ, ξi0, pi0)) is the solution of a sys-

tem (8)-(9) with the initial conditions

ξi(τ0, ξi0, pi0)=ξi0, p(τ, ξi0, pi0)=pi0, i=1, 2, . . . , N.

When N → ∞ the sum Fi should be replaced by the

integral
∫∫

Mτ

ρ(τ, ξ′, p′)F (ξ(τ, ξ0, p0)− ξ′, p′)dξdp′,

where ξ(τ, ξ0, p0), p(τ, ξ0, p0) satisfy the system of equa-

tions

dξ(τ, ξ0, p0)

dτ
=

p(τ, ξ0, p0)

(1 + p2(τ, ξ0, p0))1/2
,

dp

dτ
= α(τ, ξi)+

∫∫

Mτ

ρ(τ, ξ′, p′)F (ξ(τ,ξ0,p0)−ξ
′, p′)dξ′dp′.

Here

Mτ = {(ξ(τ, ξ0, p0), p(τ, ξ0, p0) : (ξ0, p0) ∈ M0}.

Note that

ρ(τ, ξ(τ, ξ′0, p
′
0), p(τ, ξ

′
0, p

′
0)) = ρ0(ξ

′
0, p

′
0)×

det
−1

(

D(ξ(τ, ξ′0, p
′
0), p(τ, ξ

′
0, p

′
0))

D(ξ′0, p
′
0)

)

and, therefore,
∫∫

Mτ

ρ(τ, ξ′, p′)G(ξ(τ, ξ0, p0)− ξ′, p′)dξ′dp′ =

∫∫

M0

ρ0(ξ
′
0, p

′
0)F (ξ(τ, ξ0, p0)−

ξ(τ, ξ′0, p
′
0), p(τ, ξ

′
0, p

′
0))dξ

′
0dp

′
0.

Thus, we obtain the system of the form (5):

dξ(τ, ξ0, p0)

dτ
=

p(τ, ξ0, p0)

(1 + p2(τ, ξ0, p0))1/2
,

dp(τ, ξ0, p0)

dτ
= α(τ, ξ(τ, ξ0, p0))+

∫∫

M0

ρ0(ξ
′
0, p

′
0)F (ξ(τ, ξ0, p0)−

ξ(τ, ξ′0, p
′
0), p(τ, ξ

′
0, p

′
0))dξ

′
0dp

′
0.

The one-dimensional disk model is convenient in ex-

ploration of the longitudinal motion in axial symmetric

structures. For exploration of three-dimensional problems¡

however, by way of example we may take a uniformly

charged sphere of radius a as a large-size particle. The for-

mula for force of interaction of two such balls is known

[8] and based on this formula, we can write the system of

integro-differential equations [10] for modeling and opti-

mization of beam dynamics of charged particles in three-

dimensional case.

CONCLUSION

Considered integro-differential model for the dynamics of

intense charged particle beams can be used effectively and

is used in the solution of simulation and optimization of

beam dynamics of charged particles in the accelerating and

focusing structures.
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