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Abstract 
The paper is devoted to quasiperiodic beam dynamics 

investigation. Particle density is modeled by 

trigonometric polynomial. Space charge field is 

represented in the similar form. This approach is applied 

to beam dynamics investigation in klystron-type buncher. 

Numerical algorithm of polynomial coefficients 

calculation from the positions and impulses of model 

particles is formalized. As a result Coulomb field 

intensity is expressed in the form of integral over the set 

of particle phase states. Integro-differential beam 

evolution model is presented. Analytical expression of the 

variation of beam dynamics quality criterion is obtained. 

It makes possible directed methods using for beam 

dynamics optimization.  

BEAM DYNAMICS EQUATIONS 

Consider quasiperiodic beam dynamics in accelerator 

or some beam forming system. Let us take klystron 

buncher as an example (the bunching process is supposed 

to be adiabatic). The channel is supposed to be cylindrical 

tube of radius a . Let us introduce the cylindrical 

coordinates zr ,,θ  with Oz  axis coincided the channel 

axis. 

Beam evolution is simulated on the basis of particle-in-

cell method. Model particles are supposed to be “thick” 

disks with radius R . Dynamics equations are as follows: 
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Here [ ]Tct ,0∈=τ , t  is the time, c  is the velocity of 

light; iz  and ip  are longitudinal coordinate and reduced 

impulse of i -th particle; e  and 0m  are absolute charge 

value and rest mass of electron; )(RF

iE  and )(int

iE  are the 

intensity functions characterizing the action on model 

particle of RF and Coulomb fields correspondingly. 

PARTICLE INTERACTION ACCOUNT 

Assume that independent variable value τ  is fixed. We 

suppose beam spatial quasiperiod to be cylinder 

[ ] [ ) [ )HzHzR cc +−×× ,2,0,0 π  where cz  is center 

coordinate; the cylinder is charged uniformly across the 

radius. We presume the beam to be periodic when 

calculate space charge forces. Coulomb field calculation 

algorithm is as follows. 

1. Introduction of longitudinal coordinate grid 

{ }MjjhHzcj 2,0,2 =+−=ξ , where MHh =2 . 

2. Calculation of grid cell charges 12,0, −= Mjq j  

with the use of clouds-in-cells method. It is supposed that 

02 qq M =  due to beam spatial periodicity. Approximation 

of bunch charge density by piecewise constant function 

[ ){ }.12,0,,,)2(),(
~ 2 −=+−∈= MjhhzRhqzzS jjjc ξξπ   

3. Approximation of the function ),(
~

czzS  by 

trigonometric polynomial )( czzS −  taking the values 

12,0,)2( 2 −== MjRhqS jj π  at grid points [1-3]:  
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The coefficients MmBA mm ,0,, =  are expressed by 

trigonometric interpolation formulae: 
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where Q  is bunch charge value, mν  is the integer part of 

the value Mm+1 . 

4. Calculation of potential field intensity characterizing 

the periodic beam action on the model particle. The 

intensity expression is derived on the basis of potential 

function obtained by Poisson equation solving with right-

hand part proportional the polynomial )( czzS −  [2-4]. 

The intensity calculation formula is as follows: 
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where 
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Here 0ε  is electric constant, )(1 xJ  is first order Bessel 

function, �,2,1, =kkµ  are the zeros of Bessel function

)(0 xJ ; cp  is the average reduced impulse of the bunch; 

),( cpxχ  is model particle form coefficient; d2  is cloud 

size. 

Intense beam dynamics was investigated for klystron-

type buncher with following main characteristics: initial 

energy of electrons =
0

W 0.5 MeV, average beam current 

=I 15 A [2]. Beam dynamics simulation code was 

developed in cooperation with B.S. Zhuravlev. Two 

interaction account modes were realized: “disks-in-cells” 

model [3] using Fourier-Bessel series and described 

above model using trigonometric polynomial. The 

analysis of numerical results obtained confirms both 

modes validity. Clearly, “trigonometric” model provides a 

significant smoothing of the processes under study and is 

preferred to use when electron bunches are mostly 

formed. 

COULOMB FIELD INTEGRAL 

REPRESENTATION 

Coulomb field representation in terms of model 

particle positions 

Let us suppose form coefficient ),( cpxχ  to be 

continuous function taking zero values outside the cloud. 

Note that the coefficients MmBA mm ,0,, =  in formulae 

(2)-(4) are expressed in terms of grid cell charges. In their 

turn, grid cell charges may be expressed in terms of 

model particles positions Nnzn ,1, = , where N  is 

particles number. For any 12,,0 −= Mj �   
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where )(xΠ  is interpolation function defining the rule of 

charge distribution in grid cells. 

In view of Eq. (3)-(5), beam action on the −i th model 

particle has the representation of the following form: 
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where ),,,( ccni pzzzV  is the smooth function. 

Phase density and Coulomb field integral form 

Now we will take into account external field 

dependence on control vector u . Assume that τ  value 

and vector function u  are fixed. Let us consider particle 

distribution to be continuous�� ���� u,τM  be the domain of 

bunch particles phase states. 

Let particle phase state ),( pz  be a random variable 

with the values in the domain u,τM  and ),,( pzτρ  be 

probability density. Consequently, the expected value of 

any function ),( pzU  defined on beam trajectories may 

be presented in the form .),,(),(

,

�
uτ

ττττττ τρ
M

dpdzpzpzU  

Relying formula (6) and the law of large numbers, we can 

argue that 
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where ),( ccc pz=x . The integral in right-hand part of 

formula (7) provides mathematical model of 

quasiperiodic beam Coulomb field. 

INTEGRO-DIFFERENTIAL BEAM 

DYNAMICS MODEL 

Consider beam evolution description with due account 

of the fields excited by the beam itself basing on the 

research conducted by Dmitri Ovsyannikov and his 

colleagues [5-11]. 

We will describe quasiperiodic beam dynamics by 

integro-differential equations. Mathematical models of 

such a class are widely applied in treatment of beam 

dynamics modeling and optimization problems [5,9,12-

16]. 

Let us generalize beam dynamics model (1) taking into 

account the fields induced by moving beam itself [12]. 

Dynamic controlled process is described by the equations 
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with initial conditions 

 ).(),0(,)0( 000 xxxx ρρ =∈= M  (10) 

Here [ ]T,0∈τ  is independent variable, T  is constant, x  

��� �	
��� ������� u  ��� ������� ������ �������� 1f  is 
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����������� ��� �	�� ���	�� �� ������
�� ������� ���������

)(uF  is the vector of values of functionals defined on 

��
����
������������������������ 2f  is determined by the 

���	�����
������������
�����
������� ),,( yxτρ  is phase 

density defined on system (8�� ��
���������� 0M  is the set 

of initial part����� �	
��� ��
����� )(0 xρ  is initial phase 

��������� { }000, :),,( MM ∈== xuxxxu τττ . Vector )(uF  

components are the values of the functionals  

 ,,1,),(),,()(

0 ,

LlddF

T

M

ll

u

=Λ= � � ττρτ τττ

τ

xxuxu   

describing the characteristics of RF fields excited by 

moving beam. 

All the functions in the Eq. (8)-(10) are supposed to be 

rather smooth to obtain quality functional variation and 

gradient [5,12]. 

Mathematical model (8)-(9) may be applied to describe 

beam control process in klystron buncher. In this case we 

have T
pzt ),(; == xτ . Besides, we suppose 0cc pp = , 

2

0 1 cccc ppzz ++= τ , where 0cz  and 0cp  are initial 

coordinate and initial reduced impulse of bunch centre. So 

the integrand in formula (7) may be presented as 

)ˆ,,( zzV iτ . Control vector u  is the vector of device 

�
�
������������
�������
��	���
�������������������	����

the components of vector )(uF  are the coefficients of 

Fourier-series exp
������������������������������
���� 
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The detailed RF fields description is given in [12,15-17]. 

OPTIMIZATION PROBLEM 

The approach suggested by D.A. Ovsyannikov makes it 

possible to formulate different beam dynamics 

optimization problems as trajectory ensemble control 

�������������������
����������������
����
�����
�����

criterion gradient. Such an approach is successfully 

applied by many researchers [9,13,18-27]. 

Let us estimate the controlled process (8)-(9) quality by 

the values of functional 

 � �Φ=
T

M

ddI

0 ,

),(),,()(

u

xxuxu

τ

ττρτ τττ  (11) 

with smooth integrand.  

For example, when optimizing klystron buncher 

parameters, one can construct the integrand ),,( uxτΦ  to 

be positive for the particles satisfying the requirements 

imposed at device exit and to be zero (or negative) 

otherwise. Functional (11) is to be maximized. 

Using the results [5,12] we obtain nonclassical 

variation of the functional (11): 
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Here u∆  is control u  �
��
����� u∆  designates the 

increment of any function with respect to argument u  

���� vector function ),( x� τ  satisfies on the trajectories 

of dynamic process (8)-(9) the auxiliary system of 

integro-differential equations 
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with the following condition at T=τ :  

 .0))(,( =TT x�   

Vector )(uG  in Eq. 12, 13 is the vector of values of 

functionals defined on beam trajectories:  

 ( ) ( ) .,
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The analytical representation (12) of quality criterion 

variation makes it possible to use the directed 

optimization methods in beam dynamics optimization 

problems. It may be beneficial to combine the gradient 

optimization with random search [28]. 
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