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Abstract

A model of magnetic suspension control system of a

gyro rotor is studied. A delay in the feedback control

scheme and dissipative forces occurring due to energy

losses at the interaction of the magnetic field with currents

in the control loops are taken into account. Two approaches

to the synthesis of controls stabilizing the equilibrium po-

sition of the considered system are proposed. The results

of a computer simulation are presented to demonstrate ef-

fectiveness of the approaches.

INTRODUCTION

Nonlinear oscillatory systems are widely used for the

modeling charge particles motions in cyclotrons in neigh-

borhoods of equilibrium orbits [1–3]. They are also applied

for the analysis and synthesis of magnetic control devices

[4, 5]. In particular, magnetic systems of retention of power

gyro rotors are used in modern control systems of space-

craft orientation with long periods of autonomous opera-

tion. An actual problem for such systems is stabilization of

their operating modes.

It is worth mentioning that realistic models of numer-

ous control systems should incorporate delay in feedback

law [6]. It is well-known that delay may seriously affect

on system’s dynamics. Therefore, it is important to obtain

restrictions for delay values under which stability can be

guaranteed.

In this paper, analytical and numerical investigations of

stability of the equilibrium position for a nonlinear oscil-

latory system are presented. The system can be treated

as a mathematical model of magnetic suspension control

system of a gyro rotor [5]. A delay in the feedback con-

trol scheme and dissipative forces occurring due to energy

losses at the interaction of the magnetic field with currents

in the control loops are taken into account.

Two approaches to the synthesis of stabilizing controls

are proposed. With the aid of a computer simulation of

dynamics of closed-loop systems, a comparison of these

approaches is fulfilled, and their features and conditions of

applicability are determined.
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STATEMENT OF THE PROBLEM

Consider the control system
{

ẍ(t) − p(x(t), y(t))y(t) = ux,

ÿ(t) + p(x(t), y(t))x(t) = uy.
(1)

Here (x(t), y(t))T is the state vector, ux and uy are control

variables, and function p(x, y) is defined by the formula

p(x, y) = α + β(x2 + y2),

where α and β are constant parameters. Thus, the consid-

ered system is affected by non-conservative forces and con-

trol ones. Equations of the form (1) are used, for instance,

for modeling rotor dynamics in magnetic suspension sys-

tem [5].

In the present paper, we will assume that α = 0, and non-

conservative forces are generated in the electromechanical

system with a certain delay τ ≥ 0. The reason for arising

the delay is an inertia in response of the magnetic suspen-

sion control system on rotor deviations from the equilib-

rium position. It should be noted that the value of delay

might be unknown. In addition, we will assume that the

system is affected by a dissipative force (Fx, Fy)T depend-

ing only on the velocities.

Thus, the rotor dynamics is described by the equations















ẍ(t)−β
(

x2(t − τ) + y2(t − τ)
)

y(t − τ)
+Fx(ẋ(t), ẏ(t)) = ux,

ÿ(t)+β
(

x2(t − τ) + y2(t − τ)
)

x(t − τ)
+Fy(ẋ(t), ẏ(t)) = uy.

(2)

We assume that initial functions for solutions of (2) belong

to the space C1([−τ, 0], R2) of continuously differentiable

functions ϕ(θ) = (ϕx(θ), ϕy(θ))T : [−τ, 0] → R2 with

the uniform norm

‖ϕ‖τ = max
θ∈[−τ,0]

(‖ϕ(θ)‖ + ‖ϕ̇(θ)‖) ,

and ‖ · ‖ denotes the Euclidean norm of a vector.

For the desired position of the rotor axis we have x =
y = 0. It is known, see [7], that if τ = 0 and ux = uy = 0,

then the equilibrium position

x = y = ẋ = ẏ = 0 (3)

of system (2) is unstable. Therefore, we should to design a

feedback control law stabilizing the equilibrium position.
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In the present paper, we will study the stabilization prob-

lem for two types of dissipative forces:

(i) linear forces;

(ii) nonlinear homogeneous forces.

SYNTHESIS OF STABILIZING

CONTROLS

First, consider the case where dissipative forces are lin-

ear ones. Then system (2) takes the form















ẍ(t)−β
(

x2(t − τ) + y2(t − τ)
)

y(t − τ)
+b11ẋ(t) + b12ẏ(t) = ux,

ÿ(t)+β
(

x2(t − τ) + y2(t − τ)
)

x(t − τ)
+b21ẋ(t) + b22ẏ(t) = uy.

(4)

Here b11, b12, b21, b22 are constant coefficients such that the

matrix B = {bij}
2
i,j=1 is positive definite.

With the aid of the approach proposed in [8, 9], we ob-

tain that the following theorem is valid.

Theorem 1 Let

ux = −
∂Π(x(t), y(t))

∂x
, uy = −

∂Π(x(t), y(t))

∂y
. (5)

Here Π(x, y) is an arbitrary positive definite homogeneous

form of the forth order. Then the equilibrium position (3)

of system (4) is asymptotically stable for any τ ≥ 0.

Remark 1 Theorem 1 remains valid in the case where

there is a delay in the feedback law, i.e., where

ux = −
∂Π(x(t − τ1), y(t − τ1))

∂x
,

uy = −
∂Π(x(t − τ1), y(t − τ1))

∂y
.

Here τ1 = const > 0.

Next, consider the case where system (2) is of the form























ẍ(t)−β
(

x2(t − τ) + y2(t − τ)
)

y(t − τ)

+b1

(

ẋ2(t) + ẏ2(t)
)γ

ẋ(t) = ux,

ÿ(t)+β
(

x2(t − τ) + y2(t − τ)
)

x(t − τ)

+b2

(

ẋ2(t) + ẏ2(t)
)γ

ẏ(t) = uy.

(6)

Here b1, b2 and γ are positive parameters. Thus, we as-

sume that dissipative forces are essentially nonlinear and

homogeneous ones.

Using the results of [8–10], we arrive at the following

theorem.

Theorem 2 Let

ux = gβẏ(t), uy = −gβẋ(t), (7)

where g = const > 0. If 0 < γ < 1, then the equilibrium

position (3) of system (6) is asymptotically stable for any

τ ≥ 0.

Remark 2 Condition 0 < γ < 1 of Theorem 2 is essential

one. Really, if γ = 1, τ = 0, and b1 = b2 = β = 1/g >
0, then the corresponding system (6) closed by control (7)

admits the following family of solutions:

x(t) = c sin t, y(t) = c cos t,

where c is an arbitrary constant. Hence, the equilibrium

position (3) of the system is not asymptotically stable.

RESULTS OF A NUMERICAL

SIMULATION

The results of a computer simulation are presented in

Figs. 1–4. It is assumed that β = 1, b11 = b22 = 1,

b12 = b21 = 0, b1 = b2 = 1, γ = 1/2, τ = 1. Ini-

tial conditions of solutions are chosen as follows: t0 = 0,

ϕx(θ) = ϕy(θ) = 0.25, ϕ̇x(θ) = ϕ̇y(θ) = 0 for θ ≤ 0.

First, consider system (4) closed by the control

ux = −10x3(t), uy = −10y3(t). (8)

According to Theorem 1, Fig. 1 illustrates stabilization pro-

cess.
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Figure 1: State response of system (4) closed by control (8).

Next, consider system (4) with a control of the form (7).

Let

ux = 0.242ẏ(t), uy = −0.242ẋ(t). (9)

In this case, Fig. 2 demonstrates unstable behavior of the

solution.

In Fig. 3, trajectory of the solution of system (6) closed

by the control

ux = ẏ(t), uy = −ẋ(t) (10)

is shown. The figure demonstrates the effectiveness of The-

orem 2.

Finally, consider system (6) closed by a control of the

form (5) with a delay in the feedback law. Let

ux = −100x3(t−1.05), uy = −100y3(t−1.05). (11)

Figure 4 shows that the corresponding solution does not

converge to the origin as t → +∞.
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Figure 2: State response of system (4) closed by control (9).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

x

y

Figure 3: The trajectory of system (6) closed by con-

trol (10).

CONCLUSION

In the paper, two approaches to the synthesis of stabiliz-

ing controls are proposed for a nonlinear oscillatory sys-

tem with time delay. The first one is based on the using

of potential control forces. It is applicable in the case of

linear dissipative forces. The second approach is efficient

for systems with essentially nonlinear homogeneous dissi-

pative forces. For this case, gyroscopic control forces are

constructed. It should be noted that the application of the

proposed approaches provides asymptotic stability of the

corresponding closed-loop systems for any nonnegative de-

lay.
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Figure 4: State response of system (6) closed by con-

trol (11).
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