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Abstract 
A compact continuous-wave linear accelerator for 

industrial applications with an output electron energy of 1 
MeV and design average beam current of 25 mA is 
described. The results of beam dynamics, accelerating 
structure, and RF system simulation are presented, 
accelerator construction and first results of its 
commissioning are described.  

INTRODUCTION 
1 MeV RF CW electron accelerator [1] with a 

maximum beam current of 25 mA for radiation 
technologies is being developed at SINP MSU. 
Accelerator commissioning started in the falls, 2013. At 
present accelerator is being operated for testing radiation 
influence at the materials properties and for investigating 
the radiation degradation of solar cells and circuit boards 
properties, designed for space operation. 

ACCELERATOR DESCRIPTION 
The accelerator scheme is shown in Fig. 1. 

 
Fig. 1. The accelerator scheme. 

 
An electron gun (1 in Fig. 1) with two focusing 

electrodes and an operating cathode voltage of -15 kV is 
located directly at the input flange of the accelerating 
structure (4). Focusing electrode voltage controls an 
output gun current from 0 to 250 mA. On-axis coupled 
biperiodic accelerating structure operates at a frequency 
of 2450 MHz. A klystron with a maximum output power 
of 50 kW [2] supplies the accelerating structure with RF 
power through the central accelerating cavity. Similar 
high voltage allows to use a common power supply for 
the klystron and the electron gun. The klystron operates in 
a self-oscillating mode provided by a low-power RF 
system (9) which fixes out a positive feedback loop 

between the klystron and accelerating structure. Magnetic 
shielding (3) is installed above the structure. Steering 
coils and solenoidal lens are located in between the 
structure and magnetic shielding. The accelerator vacuum 
is provided by an ion pump (5) and a sputter-ion pump of 
the electron gun. Depending on beam applications 
different systems can be installed at the output of the 
accelerating structure. To measure high power beam 
parameters a Faraday cup with water cooling is placed at 
the output, provided with vacuum system comprising a 
rough pump and a turbomolecular pump. The beam 
scanning system, consisting of a beam divergence camera 
(8), bending magnet (6) and an ion pump (7) is used for 
materials irradiation. The bending magnet is powered by 
the voltage with an amplitude and shape required for the 
formation of a uniform radiation field over the entire 
surface of the output window with 5x70 cm2 dimensions. 
Accelerator operating volume is separated from 
atmosphere by 50 microns titanium foil fixed at the beam 
divergence camera output flange. The accelerating 
structure and the klystron are cooled with distilled water. 
A total water consumption of accelerator cooling system 
is 120 l/min. 

The accelerator operation is managed by the control 
system based on programmable microcontrollers (PMC). 
The system provides control of all accelerator systems via 
the remote terminal and information on their operation 
status. The control system is equipped with a set of 
emergency – red buttons, and operational interlocks - 
accelerator hall open door, poor ventilation level, bad 
vacuum, insufficient structure and klystron water flow, 
unlocked accelerator case, as well as klystron beam and 
body overcurrents.  

Accelerator photo with the beam scanning system is 
shown in Fig. 2. 

 
Fig. 2. Photo of the accelerator with the beam scanning 
system. 
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ACCELERATOR SYSTEMS 

Accelerating Structure Simulation 
Since we have used a common power supply for the 

gun and the klystron, our electron gun beam energy is 15 
keV. To make our accelerator compact, we eliminated the 
traditional bunching system, drift space, and focusing 
elements and mounted the gun directly to the accelerator 
structure. Injecting a 15 keV direct current gun beam into 
the accelerating structure cells places large demands on 
the beam dynamics [3]. Electron velocities significantly 
vary in consequent structure cells, therefore the cells 
lengths vary too. Besides, to provide high capture 
efficiency, Iout/Igun, we use the initial structure cell as a 
pre-buncher. To accomplish this we must provide the 
maximum bunching parameter at the second cell (the first 
accelerating cell) center.  

Electromagnetic fields and beam dynamics in the 
accelerating structure were calculated with SUPERFISH 
[4] and PARMELA [5] codes. Electron gun calculations 
were carried out with EGUN [6] code for different 
focusing electrodes voltages. An example of particle 
trajectories for focusing electrodes voltages 500 V and 
2500 V with respect to the cathode potential for beam 
current 53 mA is shown in Fig. 3 Calculated beam spot 
and phase space at the structure output with 19.1 kW RF 
power dissipated in the walls are shown in Fig. 4. In this 
case the capture efficiency, Iout/Igun, is 38%. 

Fig. 3. Calculated particle trajectories in the electron gun 
for focusing electrodes voltages 500 V and 2500 V with 
respect to the cathode potential. 

 

Fig. 4. Calculated beam spot and phase space at the 
structure output. 

RF System Design 
Accelerator RF system schematic is shown in Fig. 5. 

Fig. 5. Accelerator RF system schematic. 
 
We use a 50 kW CW klystron (K) to drive the 

accelerating structure (S). Some 22 kW of the klystron 
power is dissipated in the structure walls providing the 
accelerating field and, depending on beam current, up to 
25 kW goes into the beam. When operating in the self-
excited mode, the system oscillates at the structure 
resonant frequency, which the klystron frequency 
automatically follows. A RF probe provides the structure 
signal that passes through electrically driven phase-shifter 
(φ) and attenuator (A), and then enters the klystron. The 
self-excitation phase conditions are chosen by the phase-
shifter while the feedback attenuator regulates the 
klystron output power and, consequently, the accelerating 
field amplitude. This amplitude is controlled by a diode 
(D). To start/stop oscillations a RF switch (SW) is used. 

To define optimum attenuation of the feedback we 
made calculations of accelerator parameters on beam 
loading for different values of feedback attenuation. 

RF power dissipated in the structure walls Pw and beam 
energy E are connected with structure coupling β, beam 
current I, output klystron power Pkl, effective shunt 
impedance Zef  and structure length L by relations [7]:  

௪ܲ = 4 ௞ܲ௟ߚሺ1 + ሻଶߚ ቌ1 − ඨܫଶܼ௘௙4ܮ ௞ܲ௟ߚ ቍ
ଶ
 

ܧ = ඥ4 ௞ܲ௟ܼߚ௘௙ܮ − 1ܮ௘௙ܼܫ + ߚ  

Reflected power Pr is defined as ௥ܲ = ௞ܲ௟ − ௕ܲ − ௪ܲ, 
where ௕ܲ =  .ܫܧ

Amplitude characteristics of the klystron was 
approximated by the square of the 1-st order Bessel 
function, normalized in such a way, that maxima of the 
Bessel function and of amplitude characteristics of the 
klystron approximately coincided.  

Results of the calculation for optimum feedback 
attenuation of 39 dB, 1.22 coupling value, 53 MΩ/m 
effective shunt impedance, and 0.84 m structure length 
are shown in Fig. 6. 

CALCULATION 
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Fig. 6
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