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Abstract 
Two approaches usually are used to describe beam-

cavity interaction in accelerator based applications. The 
first one is electro dynamical and uses Maxwell equations 
to derive appropriate equations, field modes expressions 
being necessary to calculate field amplitudes excited by 
moving charges in the cavity. The other one uses LC 
circuit to derive appropriate equations for voltage 
amplitude induced in cavity by accelerated bunches, thin 
accelerating gap to some extent being not fully correctly 
defined representation in such approach. In this paper, the 
expressions are derived that describe beam-RF cavity 
interactions in terms of so called complex shunt 
impedance, strict electro dynamical approach being used 
in calculations. It is shown that complex shunt impedance 
module coincides completely with usual shunt impedance 
definition that up to now is used widely to describe rf 
cavity efficiency. The physical sense of its phase is given 
in the paper as well. Both complex shunt impedance 
module and its phase can be calculated or measured 
experimentally. 

INTRODUCTION 
To analyze the processes resulting from beam-cavity 

interaction two approaches are used mainly. The first one 
is based on Maxwell equations solving. Cavity eigen 
functions for vector potential are found  that together with 
differential equations for fields amplitudes form the basis 
for following analysis. In other approach mentioned the 
RF cavity is replaced with the electrical circuit containing 
active resistance, capacitance and inductance, their values 
are chosen in such a way to have the resonance frequency, 
quality factor and shunt impedance the same for the RF 
cavity and for the circuit. In this approach one has an 
analytical representation so necessary for analysis but the 
questions concerning approach justification and some 
uncertainness arise. 

In this paper we use strict field approach based on 
Maxwell equation to derive the equation for field 
amplitude that might be suitable for processes analysis in 
accelerator containing RF cavity. Complex shunt 
impedance concept have been introduced and this 
appeared be fruitful for beam-cavity interaction processes 
description in RF accelerator based applications 
problems.  

ELECTRODYNAMICS OF RF CAVITY-
BEAM INTERACTION 

To find out the fields that induces moving charge in a 
RF cavity, we will use the method that had been 
developed in [1]. Vortex electrical ),( trE rr

and magnetic 

),( trH rr
 fields are represented as derivatives of vector 

potential ),( trA rr
on time t  and space rr coordinates: 
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where 0μ  is magnetic permeability of free space. Here 
and later SI units are used. Vector potential satisfies the 
wave equation  
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, c  being current density and  the light velocity.  
To find out the expressions for vector potential we will 

use the most direct way. Namely, we represent vector 
potential as an expansion on the infinite sum of RF cavity 
eigen functions )(rA rr

λ  with time dependent 

coefficients )(tgλ : 
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with the boundary conditions 0| =ΣλA
r

 on cavity 
surface. 

Starting from the equation (2) and taking into account 
(3) one can easily obtain the equations for cavity vector 
eigen functions and appropriate time dependent 
coefficients (fields amplitudes): 

0)()( 2 =+Δ rAkrA rrrr
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Here ck /λλ ω=  are eigen values of boundary values 
problems (4), the specific solutions for RF cavities are 
called cavity modes, λω being the eigen angular 
frequencies of appropriate modes, c  is light velocity. 
Integration in formula is assumed to be performed over 
cavity volumeV . Last equation can be generalized up to 
the next one 
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if losses in cavity and outside are taking into account. 
Here λQ  stands for cavity quality factor: 

λ
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where λW  is the electromagnetic energy in the mode λ , 

stored in cavity volume and λP  represents the total RF 
power losses that besides ohm losses in cavity walls 
includes the external losses due to cavity coupling with 
external circuits. It is supposed that eigen functions are 
normalized by the condition 

∫ ==
V

cA 0
2

0
2 /1 εμλ                           (8) 

Here 0μ  and 0ε  are magnetic and electric 
permeability respectively. 

For the analysis followed we will use the cavity 
excitation equation in the form with small RF losses, and 
this  has no any influence on generality of results to be 
obtained. Then, all calculations will be made for a single 
charged particle with charge value q of zero dimensions 
in all directions entering cavity at moment 0=t . In such 
a case the total current density 

)),,(),(),( vtyxtrvqtrj δrrrr
= ,            (9) 

where ),( trv rr
stands for particle velocity being assumed 

constant within the cavity, and ()δ   is Dirac delta 
function: ∞=)(xδ  for 0=x , 0)( =xδ  for 0≠x  

∫
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We suppose also the case that is the most interesting for 
accelerator based applications – the particle moves along 
cavity axis where 

vtzyx === ,0,0                    (11) 
In such assumptions: 
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From here and to the paper end we omit mode indexes 
that does not lead to ambiguity. It follows from last 
relation that 
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were ),0,0()( zAzA z=  and ()η is Heaviside step 
function  

1)( =xη for all 0≥x , 0)( =xη for all 0<x  (14) 
The solution of the equation (13) that satisfies initial 
conditions 0)0()0( == gg & (corresponding equal to 
zero electric and magnetic components of induced field) 
can be represented in the form [2]: 
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Here 
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Note that solution for field amplitude in the form (14) is 
valid for time interval vLt /> . 

INDUCED VOLTAGE OVER CAVITY 
EXTERNAL PARAMETERS 

Let us find out probe particle with charge e energy gain 
after passage of the cavity assuming field amplitude 
being )sin()( ϕω += tatg , where a is constant. One 
can derive easily: 
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Representing rf cavity in the form of equivalent thin 
gap of zero length (accelerating gap) with applied rf 
voltage one can conclude that appropriate voltage 
amplitude mU is equal to 
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This can be expressed in terms of cavity shunt 
impedance R and cavity quality factorQ : 
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where 0P stands for cavity walls power losses and W  is 
electromagnetic energy stored in the cavity volume. 
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Taking into account normalization condition one 
arrives finally at relations 
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Let us calculate energy loss for the particle traversing 
cavity filled with the field induced by previous charge, 
both radiating charge and probe particle being spaced by 
time interval equal to period of rf oscillations.  
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 Together with last expression this gives 
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In terms of thin gap this means that bunch with charge 
q induces rf voltage of amplitude  

02 Q
RqU ω

=                              (23) 

and rf phase π . Furthermore, taking into account field 
damping we arrive finally to the next expression for rf 
field, induced by charged bunch on equivalent thin gap 

tQt
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2 0
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Very often, current value I averaged over RF period is 
used instead of charge value 

tQt
Q
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0

−−=              (25) 

RF CAVITY COMPLEX SHUNT 
IMPEDANCE CONCEPT 

It follows from (14) that the phase of oscillating 
depends on two quantities 1J  and 2J , and these two 
quite different functionals can not be expressed over one 
quantity. These parameters might be used for detailed 
description of beam-cavity interaction and the outlook on 
relation (14) prompts to represent it in the form 
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and formula  takes the form: 

)cos()( ψω
ω

+−= tDtg                         (28) 

Thus, the pare of quantities 1J and 2J or D and ψ  is 
needed for detailed description of beam-cavity 
interaction, and this pare, as it followes from formulae 
written above, might be considered as the real and 
imaginary parts or the module and the phase of complex 
quantity: 

ψiDDiDD expImReˆ =+=             (29), 
where i is imaginary unit. D  is expressed over cavity 
shunt impedance, and finally expression for field 
amplitude looks like 
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It is often much more convenient to deal with complex 
quantities remembering that physical sense has its real 
part. Then, denoting 

)2exp( ψiRZ =  ,                         (31) 
we arrive at relation 
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In these notations, it is quite natural to refer to Z  as 
complex shunt impedance. Its module coincides with 
usual cavity shunt impedance. To establish physical sense 
its phase let us rewrite expression (16) for energy gain for 
the probe particle entering a cavity at 0=t  using ψ  
definition: 
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Complex cavity shunt impedance can be calculated for 
any particular mode according formulae above or 
established experimentally. To measure R and ψ  the 
following experiment has to be done. RF cavity installed 
on probe beam path is fed with power P . Cavity RF 
phase is adjusted to have the maximum energy gain 

mU at its exit. Appropriate combination (18) of values 
obtained gives cavity shunt impedance module. Adjusting 
phase shifter to position corresponding zero energy gain 
at cavity exit one gets information concerning phase ψ  . 

CONCLUSION 
The concept of complex shunt impedance has been 

introduced to the problem under attention, and solution 
for field amplitude had been expressed in terms of this 
cavity parameter. The physical sense both for the module 
and the phase as well of complex shunt impedance has 
been clarified. The first one is simply cavity shunt 
impedance in widely used sense, while the other fixes the 
phase at which the probe particle, entering cavity, 
traverses it without additional energy gain. It had been 
shown, that complex shunt impedance components can be 
calculated or measured experimentally. 
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