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Mathematical methods of beam dynamics optimization
was developed in the works of D.A. Ovsyannikov (see [1]).
These methods are based on numerical calculation of the
first derivatives on accelerator structure parameters of func-
tional estimating quality of a beam. They allow to find ac-
celerator structures with satisfactory parameters and also to
improve existing structures. The present paper is devoted to
new method based on numerical calculation of the second
derivatives of the functional. This method can be consid-
ered as an extension of the methods of first order.

BEAM DYNAMICS CONTROL PROBLEM
Consider a beam describing by the particle distribution

density �(x) in the phase space Ω, x ∈ Ω. Let at the ini-
tial moment t0 the particle distribution density [2] is given
on some p-dimensional surface S : �(t0, x) = �(0)(x) =
�(0) 1...p(x) dx1∧. . .∧dxp, p ≤ dimΩ,where xi, i = 1, p,
are coordinates on S0 which can be taken also as some of
coordinates in the phase space.

Assume that the particle trajectories are described by the
differential equation

dx

dt
= f(t, x, u),

where t is trajectory parameter, t ∈ [t0, T ], u is control
function, u(t) ∈ U ⊂ Rr. Assume that vector f is de-
fined in a domain [t0, T ] × Ω × U, and that the solution of
the Cauchy problem for this equation with initial condition
x(t0) = x0 uniquely exists for any x0 under consideration.

Let introduce functional characterizing quality of the
controlled process

Φ(u) =
∫

Ω

g(xT )�(T, xT ), (1)

where g(x) is a piecewice continuous function, and inte-
gral on Ω means in fact integration over image of initial
surface S0 of corresponding differential form satisfying to
the Vlasov equation [2]. The problem of minimizing of
functional (1) on control function u from U is called the
terminal problem of beam control with account of particle
distribution density.

METHOD FORMULATION
Equation for the first variation of x has the form

dδxi

dt
=
∂f i

dxj
δxj + δuf

i, δxi(t0) = 0, (1)
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where

δuf
j =

∂f j

∂uk
δuk

(summation is meant on coincident indices). The solution
of the problem (1) can be written as

δxi(t) =

t∫

t0

Gi
j(t, t

′)δuf j(t′)dt′,

whereG(t, t′) is the Green matrix of the system (1), satify-
ing to the equation

dGi
j(t, t

′)
dt

=
∂f i

∂xk
Gk

j (t, t′),

and to the condition G(t, t) = E, where E is identity ma-
trix.

Then variation of the functional (1) can be written in the
form

δuΦ =

T∫

t0

∫

Ω

∂g

∂x
G(T, t′)δuf(t, x)�(t, x) dt. (1)

Let introduce the differential form

ψ(t, x) = −∂g
∂x

|x=xTG(T, t),

satisfying to equation and condition

dψ

dt
= −ψ∂f

∂x
, ψ(T ) = −∂g

∂x
|x=xT .

Then the functional variation (1) takes the form

δuΦ = −
T∫

t0

∫

Ω

ψ(t, x)δuf(t, x)�(t, x) dt.

Assume that u is a piecewise constant vector function

u = ui, t ∈ [ti−1, ti), i = 1,M, tM = T.

Then fuctional (1) can be considered as function of rM
control parameters. The derivatives on these parameters
are

∂Φ
∂uk

i

= −
T∫

t0

∫

Ω

ψ(t, x)
∂δuf(t, x)

∂uk
i

�(t, x) dt. (1)

Passing to the summation on macroparticles within the
framework of the method of macroparticles, write the func-
tional derivatives in the form

∂Φ
∂uk

i

= −
T∫

t0

N∑
j=1

ψ(t, x(j)))
∂δuf(t, x(j))

∂uk
i

dt,
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where x(j) denotes position in the phase space of the j-th
particle.

Consider second derivatives of the functional on the con-
trol parameters. For simplicity assume that r = 1 (one
scalar control function). Let us consider second derivatives
only on the same parameters ∂2Φ/∂u2

i . As

∂xj

∂ui
(t) =

t∫

t′

Gj
k(t, t′)

∂δuf
k

∂ui
(t′) dt′, (1)

the expression (1) can be rewriteen in the form

∂Φ
∂ui

=
∫

Ω

∂Φ
∂xj

∂xj

∂ui
(T )�(T ). (1)

Assume also that ∂2Φ/(∂xi∂xj) = 0 if i �= j. Then

∂2Φ
∂u2

i

=
∫

Ω

�(T )
[
∂Φ
∂xj

∂2xj

∂u2
i

(T ) +
∂2Φ
∂(xj)2

[
∂xj

∂ui
(T )]2

]
.

Passing to the summation on macroparticles we get

∂2Φ
∂u2

i

=
N∑

k=1

[
∂Φ
∂xj

∂2xj
(k)

∂u2
i

(T ) +
∂2Φ
∂(xj)2

[
∂xj

(k)

∂ui
(T )]2

]
,

where the first derivatives are expressed by (1).
It can be shown that when f j are linear on control pa-

rameters ui, second variation of x has the form

δ2xj(t) =

t∫

t0

(Dj
kl(t, t

′)δufk(t′) +Gj
k(t, t′)δu(

∂fk

∂xl
)|t′)×

×(
∫ t′

t0

Gl
mδuf

m(t′′) dt′′) dt′,

where components of the tensor D satisfy to the system of
differential equations

∂Di
lk(t, t′)
∂t′

= −2Di
lm(t, t′)

∂fm

∂xk
(t′)+Gi

m(t, t′)
∂2fm

∂xl∂xk
(t′)

and the condition

Di
lk(t, t) = 0, i, j, k = 1,m.

Then

∂2xj

∂u2
i

(t) =

ti∫

ti−1

[
Dj

kl(t, t
′)
∂δuf

k

∂ui
(t′)+

+Gj
k(t, t′)

∂

∂ui

(
δu(

∂fk

∂xl
)
)|t′

]
×

×
t′∫

ti−1

Gl
m(t′, t′′)

∂δuf
m

∂ui
(t′′) dt′′ dt′.

Numerical optimization process can be implemented as a
sequence of steps of numerical calculation of first and sec-
ond derivatives of the functional, and changing of control
parameters according to the expression

δui = − ∂Φ/∂ui

∂2Φ/∂u2
i .

i = 1,M

while the functional is decreasing. If at some step it will
be turned out that ∂2Φ/∂u2

i = 0 for some i, one should
combine this method with method of gradient descent or
another first order method.

OPTIMIZATION OF RFQ CANNEL
Assume that longitudinal component of electric field in

the RFQ channel is

Ez = U0
4kT
π

cos η cosωt, η(z) =

z∫

z0

k(z′) dz′, (1)

Here 2U0 is intervane voltage, ω is frequency of the field
oscillations, a is aperture of the cell, k = π/L, L is the cell
length, which varies along the channel, η(z) is the phase of
electrode modulation, T is acceleration efficiency.

Within the framework of this model, the longitudinal
motion does not depend of the transverse motion. It allows
us to consider logitudinal motion separately. For simplicity,
consider optimization problem accounting only longitudi-
nal motion.

Take reduced energy γ and phase of the particle ϕ = ωt
as the phase coordinates. Initial distribution in the phase
space of longitudinal motion can be set in various manner.
For example it can be taken in the form �(0) ϕ = (2π)−1,
ϕ0 ∈ [−2π, 0], γ = γ0. Here �(0) ϕ is ϕ−component of the
initial distribution density, ϕ0 and γ0 are initial phase and
energy of a particle.

Consider the difference between phase of the syn-
chronous particle ϕs and the phase of space modulation
η

Φs = ϕs −
∫
k dζ. (1)

Here ζ = z/λ, k = λk, λ = 2πc/ω. Take function
u1(ζ) = dΦc/dζ as the first control function. Let T be
the second control function: u2(ζ) = T (λζ).

The equation of longitudinal dynamics for low intensity
beam can be written in the form

dϕ

dζ
= 2πγ(γ2 − 1)−1/2, (1)

dγ

dζ
= CL(2πγs(γ2

s − 1)−1/2 − u1)u2 cos η cosϕ, (1)

where CL = 2eU0/(πmc2). Equation for η has form [3]

dη

dζ
= 2πγs(γ2

s − 1)−1/2 − u1.
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Then equations for ψ can be written in the form

dψη

dζ
=

N∑
i=1

ψ(i)γCLku2 sin η cosϕi,

dψ(s)γ

dζ
= ψη

2π
(γ2

s − 1)3/2
+

+ψ(s)ϕ
2π

(γ2
s − 1)3/2

N∑
i=1

ψ(i)γ
2π

(γ2
s − 1)3/2

CLu2 cos η cosϕi,

dψ(i)ϕ

dζ
= CL ψ(i)γkT cos η sinϕi, i = 1, N,

dψ(i)γ

dζ
= ψ(i)ϕ

2π
(γ2

i − 1)3/2
, i = 1, N.

Here i is number of a macroparticle. It is written in paren-
thesis at ψ to avoid confuse with indices. Let control func-
tions are constant inside cells: ui(ζ) = uij , ζ ∈ [ζj−1, ζj),
j = 1,M. Then

∂Φ
∂u1j

=

ζj∫

ζj−1

(ψη +
N∑

i=1

ψ(i)γCLu2 cos η cosϕi) dζ,

∂Φ
∂u2j

=

ζj∫

ζj−1

N∑
i=1

ψ(i)γCLk cos η cosϕi dζ.

Restrict ourselves to the case of one scalar control function
u = T. Then equation for Green functions and for compo-
nents of tensor D are

dGϕ
ϕ

dζ
= −Gϕ

γCLkT cos η sinϕ,
dGϕ

γ

dζ
= Gϕ

ϕ

2π
(γ2 − 1)3/2

,

dGγ
ϕ

dζ
= −Gγ

γCLkT cos η sinϕ,
dGγ

γ

dζ
= Gγ

ϕ

2π
(γ2 − 1)3/2

,

∂Dϕ
ϕϕ(ζ, ζ′)
∂ζ′

= (2Dϕ
ϕγ sinϕ−Gϕ

γ cosϕ)CLkT cos η,

∂Dγ
ϕϕ(ζ, ζ′)
∂ζ′

= (2Dγ
ϕγ sinϕ−Gγ

γ cosϕ)CLkT cos η,

∂Dϕ
ϕγ(ζ, ζ′)
∂ζ′

= − 4πDϕ
ϕϕ

(γ2 − 1)3/2
+ 2Dϕ

γγCLkT cos η sinϕ,

∂Dγ
ϕγ(ζ, ζ′)
∂ζ′

= − 4πDγ
ϕϕ

(γ2 − 1)3/2
+ 2Dγ

γγCLkT cos η sinϕ,

∂Dϕ
γγ(ζ, ζ′)
∂ζ′

= − 4πDϕ
ϕγ

(γ2 − 1)3/2
−Gγ

ϕCLkT cos η cosϕ,

∂Dγ
γγ(ζ, ζ′)
∂ζ′

= − 4πDγ
ϕγ

(γ2 − 1)3/2
−Gγ

γCLkT cos η cosϕ.

Second derivatives of the functional are ∂2Φ/∂T 2
j =

=
N∑

i=1

{∂2Φ
∂ϕ2

[ ζj∫

ζj−1

Gϕ
γ (ζM , ζ′)k cos η(ζ′) cosϕ(ζ′) dζ′

]2+

+
∂2Φ
∂γ2

[ ζj∫

ζj−1

Gγ
γ(ζM , ζ′)k cos η(ζ′) cosϕ(ζ′) dζ′

]2+

+
∂Φ
∂ϕ

ζj∫

ζj−1

Dϕ
γϕ(ζM , ζ′)k cos η(ζ′) cosϕ(ζ′)×

×[ ζ′∫

ζj−1

Gϕ
γ (ζ′, ζ′′)k cos η(ζ′′) cosϕ(ζ′′) dζ′′

]
dζ′

+
∂Φ
∂ϕ

ζj∫

ζj−1

Dϕ
γγ(ζM , ζ′)k cos η(ζ′) cosϕ(ζ′)×

×[ ζ′∫

ζj−1

Gγ
γ(ζ′, ζ′′)k cos η(ζ′′) cosϕ(ζ′′) dζ′′

]
dζ′

+
∂Φ
∂γ

ζj∫

ζj−1

Dγ
γϕ(ζM , ζ′)k cos η(ζ′) cosϕ(ζ′)×

×[ ζ′∫

ζj−1

Gϕ
γ (ζ′, ζ′′)k cos η(ζ′′) cosϕ(ζ′′) dζ′′

]
dζ′

+
∂Φ
∂γ

ζj∫

ζj−1

Dγ
γγ(ζM , ζ′)k cos η(ζ′) cosϕ(ζ′)×

×[ ζ′∫

ζj−1

Gγ
γ(ζ′, ζ′′)k cos η(ζ′′) cosϕ(ζ′′) dζ′′

]
dζ′

}
C2

L.

Particle number i atG,D, ϕ, γ is omitted for brevity. Anal-
ogous expressions can be obtained in 6-dimensional gen-
eral case with 3 control functions [3].
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