
EFFECT OF THE VERTICAL VELOCITY COMPONENT ON
PROPERTIES OF SYNCHROTRON RADIATION

Abstract
This subject determines more precisely characteristics of

synchrotron radiation when the charge particle moves on
the spiral in physical devices and a space. For this purpose
the Bessel functions of a high order are approximated to
within the second approach. It is discussed that the verti-
cal component of velocity in alternating magnetic fields of
accelerators significantly changes the spectral and angular
distributions of the radiation intensity.

Theory of synchrotron radiation when the electron has a
spiral trajectory considered by many authors (see, for ex-
ample, [1]). In this paper we find a more accurate syn-
chrotron radiation formulas for the spiral and circular mo-
tiom of electron in a constant and homogeneous magnetic
field. For this purpose, first of all we define the asymptotic
representation of the Bessel functions. Previously, several
asymptotic expressions for the Bessel functions with large
index were obtained [1] - [3]. Based on these methods we
have extended the calculations up to the second order of
accuracy [4].

However, we can take the integral representation of the
Bessel functions

Jν(y) =
1
2π

∫ π

−π

eiνϕ−iy sin ϕdϕ.

When the circular motion, it will y = νβ sin θ, where β =
v/c (v is the electron velocity) and θ is the spherical angle
of radiation. Following Schwinger [5], we assume ϕ as a
small parameter because the radiation is removed from the
small part of the orbit in a certain direction.

To study the problem with a spiral trajectory there is a
need to replace β by

β0 =
√

(β2 − β2
3)/(1 − β2

3)

and sin θ by

sin θ0 = (
√

1 − β2
3 sin θ)/(1 − β3 cos θ);

cβ3 here is the velocity component along the magnetic
field. Thus, we have

Jν(νβ0 sin θ0) =
1
2π

∫ π

−π

eiν(ϕ−β0 sin θ0 sin ϕ)dϕ.

Expanding the right-hand side in terms of ϕ and introduc-
ing a new variable as ϕ = pt, where

p = 3
√

6/(νβ0 sin θ0) · t,

we get

Jν(νβ0 sin θ0) =
p

2π

∫ ∞

−∞
dtei(xt+t3)[1 − i

ν

120
(
6
ν

)5/3t5]

with x = p(1 − β0 sin θ0)ν. Here the integral limits were
extended to infinity because ϕ is small.

Then we use the following expressions:
∫ ∞

0

cos(t3 + xt)dt =
√

x

3
K1/3(x1),

∫ ∞

0

t5 sin(t3+xt)dt =
x3

27
√

3
K2/3(x1)− 4

27
x3/2K1/3(x1),

where x1 = 2(x/3)3/2. In the first equality we took into
account the terms of order

ε = 1 − β2
0 sin2 θ0.

Finally for asymptotics of the Bessel function and its
derivative, we obtain

Jν(νβ0 sin θ0) ≈
√

ε

π
√

3
[K1/3 +

1
10

ε(K1/3 − 2μK2/3)],

(1)

J ′
ν(νβ0 sin θ0) ≈ ε

π
√

3
[K2/3+

1
5
ε(2K2/3−(

1
μ

+μ)K1/3],

(2)
where μ = νε3/2 and μ/3 is an argument of functions Ki.
The neglected terms are of the order ε with respect to the
main term.

Formulas for spectral and angular distributions in the
case of the spiral motion we can get a direct calculation
or by the Lorentz transformations. Then for the compo-
nents of the linear polarization of the radiation intensity(in
the orbital plane and perpendicular to it, respectively) we
get

dWσ(ν, θ0) = W1β
2
0J ′2

ν (β0ν sin θ0) sin θ0dθ0, (3)

dWπ(ν, θ0) = W1 cot2 θ0J
2
ν (β0ν sin θ0) sin θ0dθ0, (4)

where

W1=
3
2
W0ν

2ε0(1+β3 cos θ0), W0 =
2
3

e4
0H

2

m2
0c

3
, ε0 = 1−β2

0 .

Radiation frequency ω will be

e0H

mc
· ν

1 − β3 cos θ0
,

where H is the magnetic field strength. Using asymptotics,
right-hand sides of (3) and (4) can be written as

1
3π2

W1β
2
0ε2K2

2/3[1+
2
5
ε(2−(

1
μ

+μ)K1/3/K2/3)] sin θ0dθ0,

(5)
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1
3π2

W1 cot2 θ0εK
2
1/3[1+

1
5
ε(1−2μK1/3/K2/3)] sin θ0dθ0.

(6)
We note that at a fixed frequency in (4) and (6) π - com-
ponent is equal to zero when θ = π/2. At this angle σ -
component has a maximum. Integrating these expressions
over angle θ0 we obtain spectral formulas

Wσ(ν) = W2[
∫ ∞

y

K5/3(x)dx+K2/3(y)− 1
20

ε0(7K2/3(y)

+(16μ0 +
11
μ0

)K1/3(y) + 5
∫ ∞

y

K1/3(x)dx)],

Wπ(ν) = W2[
∫ ∞

y

K5/3(x)dx−K2/3(y)+
1
20

ε0(7K2/3(y)

+
3
μ0

K1/3(y) − 15
∫ ∞

y

K1/3(x)dx)],

where

W2 =
√

3
4π

W0νε2
0, y =

2
3
μ0, μ0 = νε

3/2
0 .

It is clear that small corrections to the known formulas are
proportional ε0.

Then we take into account that at high ν the change of
radiation frequency almost continuously. It gives us the op-
portunity to perform integration in the last formulas. Thus,
we find the radiation intensities for components of linear
polarization

Wσ =
7
8
W0

1
ε0

(1 − 8
7
ε0), Wπ =

1
8
W0

1
ε0

. (7)

Summing (7) we obtain total intensity

W =
2
3

e2
0H

2

m2
0c

3

β2 − β2
3

1 − β2
. (8)

Found formulas apply also for the electron motion in a cir-
cle with a relativistic velocity if instead of β0 and sin θ0

take β and sin θ, respectively; in addition, it is necessary
to put β3 = 0. In this case, the important spectral formula
applicable for accelerators becomes

W (ν) =
√

3
2π

W0
ν

γ4
{
∫ ∞

y1

K5/3(x)dx−

1
γ2

[
1
5
(
2ν

γ3
+

γ3

ν
)K1/3(y1) − 1

2

∫ ∞

y1

K1/3(x)dx]},

where lorentz-factor γ = 1/
√

1 − β2, y1 = (2ν)/(3γ3).
In the case of electron motion in a spiral requires special

consideration of the use of the asymptotics (1) and (2).
First of all it is necessary that β3 � β; if β3 is close to
β, it will be produced only basic tone and the integration
over a quasi-continuous spectrum is meaningless. On the
other hand, the asymptotics with corrections for the spiral
motion can be used in the case when β3 > ε0; for β3 < ε0

terms in the spectral and angular distributions, which are

proportional to ε2
0β

2
3 , will be less than the rejected terms

proportional to ε4
0. For β3 < ε0 is necessary to restrict the

asymptotics for circular motion.
We now turn to an alternating magnetic fields of accel-

erators and storage rings. For example, in the case of an
axially symmetric magnetic field we have a simple solution
for the vertical oscillations of the form

z = B cos(
√

nω0t + δ),

where B is the amplitude of oscillations, δ is the ini-
tial phase, n is the field gradient, frequency ω0 =
(e0H)/(mc). Study the problem of radiation has led to
the fact that along with parameter cos θ should be consid-
ered a derivative of the vertical movement, which defines
the tangent of sloping angle. We must bear in mind new
value

vz/c|t=0 = α · cos δ, α =
√

nB/R.

In the corresponding formulas it is necessary to carry out
averaging over phase δ.

By this we take into account the scatter of the particle
beam during the injection and difference of electron am-
plitudes in the cross section. Vertical betatron oscillations
change the behavior of spectral and angular curves [6]. In-
tensity of π - component in the orbital plane is not equal to
zero; maximum of σ - component decreases.

Quantity α varies for different machines. For storage
rings, as is known,

z =

√
βzAz

π
cos(

∫
ds

βz
+ δ),

where Az is the emittance, βz is the betatron function. In
this case we have [7]

α =

√
Az

π
[

1√
βz

√
1 + (

1
2

dβz

ds
)2]ϕ=0.

Here the azimuth angle is fixed at the point where the radi-
ation is emitted; the derivative is found as the ratio of the
legs of the triangle.
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