

E.Levichev, for the VEPP-4 team

STATUS OF VEPP-4M COLLIDER: CURRENT ACTIVITY AND PLANS

24 September 2012

Contents

- VEPP-4M general information
- High energy physics experiments
- SR experimental program
- Nuclear physics at VEPP-3
- Test beam facility
- Accelerator physics experiment
- Future plans
- Summary

VEPP-4M schematic view

VEPP-4M parameters and experimental programs

Circumference, P (m)	366.075			
Revolution frequency, f_0 (kHz)	818.924			
Revolution period, T_0 (ns)	1221			
Maximum energy, E (GeV)	5.3 ^{*)}			
Momentum compaction factor, α	0.017			
Betatron tunes, Q_x/Q_z	8.54/7.58			
Synchrotron tune, Qs	0.012			
Natural chromaticity, な/ 矣	-14.5/-20.3			
Parameters at 1.8 GeV				
Damping times, τ_s/τ_s (ms)	70/35/70			
Horizontal emittance, \boldsymbol{s}_{x} (nm-rad)	17			
Energy spread, σ_{E}/E	4×10 ⁻⁴			
Bunch length, σ_{L} (cm)	6			
Energy loss/turn, ΔU (keV)	16			
IP optical functions, $\beta_y / \beta_x / \eta_x$ (m)	0.05/0.7/0.78			

- Detector KEDR for HEP experiments
- Electron tagging system at VEPP-4M for two-photon experiments
- SR experiments at VEPP-3
- SR experiments at VEPP-4M
- Internal gas target for nuclear physics at VEPP-3
- Electron/gamma test beam facility for detector calibration
- Compton backscattering system
- High resolution polarization measurement system for CPT study
- Sophisticated beam diagnostics for accelerator experiments

VEPP-4M complex pictures

180 MHz RF cavities

50 MeV linac

Longitudinal FB kicker

- Section

Detector KEDR

Control room

VEPP-3 arc

2 MeV ELIT accelerator

VEPP-4M time sharing (2000-2010)

Experiments at VEPP-4

VEPP-4M/KEDR features for HEP

- Beam energy range varied from 0.9 GeV up to 5.0 GeV
- Beam energy calibration using resonant depolarization method with the record accuracy of 10⁻⁶
- On-line monitoring of the beam energy using the Compton back scattering method with the accuracy of $5\cdot 10^{-5}$
- Universal detector KEDR comparable with modern detectors used for high-energy physics experiments at the electron-positron colliders:
 - system of registration of scattered electrons and positrons with the record resolution 10⁻³,
 - liquid-krypton electromagnetic calorimeter,
 - system of aerogel Cerenkov counters.

Beam energy measurement

http://v4.inp.nsk.su

Resonant depolarization provides a record accuracy in energy calibration

Compton back-scattering – routine energy monitoring during HEP experiment runs

Particle mass measurements at VEPP-4

Particle	E, MeV	Accuracy, $\Delta E/E$	Detector	Years
J/ψ	3096.93±0.10	3.2.10-5	OLA	1979-1980
ψ'	3685.00±0.12	3.3.10-5	OLA	1979-1980
Υ	9460.57±0.09±0.05	$1.2 \cdot 10^{-5}$	MD-1	1983-1985
Υ'	10023.5±0.5	$5.0 \cdot 10^{-5}$	MD-1	1983-1985
Υ"	10355.2±0.5	$4.8 \cdot 10^{-5}$	MD-1	1983-1985
J/ψ	3096.917±0.010±0.007	3.5.10-6	KEDR	2002-2008
ψ'	3686.119±0.006±0.010	3.0.10-6	KEDR	2002-2008
ψ"	3772.9±0.5±0.6	$2.1 \cdot 10^{-4}$	KEDR	2002-2006
D^0	1865.43±0.60±0.38	3.8.10-4	KEDR	2002-2005
D^+	1863.39±0.45±0.29	2.9.10-4	KEDR	2002-2005
τ	$1776.69^{+0.17}_{-0.19} \pm 0.15$	1.3.10-4	KEDR	2005-2008

Tau lepton mass measurement

KEDR m_τ=1776.69+0.17-0.18 (stat.) +- 0.15 (syst.) MeV

Tau mass measurement at KEDR. Nuclear Physics B (Proc. Suppl.) 189(2009)21-23

High-energy physics: J/ ψ , ψ ' and ψ "

High-precision measurements of the y-family meson masses provide the energy scale in the range around 3 GeV, which is the basis for accurate determination of masses of all charmed particles.

Only 5 particle masses has been measured with higher accuracy

Hadron cross-section (R) measurement

$$\mathsf{R} = rac{\sigma(e^+e^-
ightarrow hadrons)}{\sigma_{\mathsf{B}}(e^+e^-
ightarrow \mu^+\mu^-)}$$

R is used to estimate hadron vacuum polarization

Previous measurements are not consistent well, so new measurement in wide energy range at one facility with one detector is highly desirable

R measurement at low energy

W(MeV)

• $\Gamma_{ee}^R \times Br(R \rightarrow hadrons) < 120 \text{ }B, 95\% \text{CL}$

To adjust VEPP-2000 and VEPP-4M energy scales, we have measured R in low energy region from 2E = 1.85 GeV to 3 GeV.

Searching of narrow resonance states in this region was performed.

Near future - high energy run

Nearest future plans: measurement of the hadron cross-section R and $\gamma\gamma$ -physics in the beam energy range up to 4.5 GeV

VEPP-4M test run in 2011 at high energy. Maximum current with feedback systems ON (up) Luminosity at 3.5 GeV (left)

The only facility where the total cross section of $\gamma\gamma \rightarrow hadrons$ can be measured precisely and reliably

SR experiments at VEPP-3

http://ssrc.inp.nsk.su

- 0a LIGA and X-ray lithography
- 0b "Explosion"
- 2 Precision diffractometry and anomalous scattering
- 3 X-ray fluorescence analysis
- 4 High-pressure diffractometry
- 5a X-ray microscopy and micro-tomography
- 5b Time-resolution diffractometry
- 5c Small-angle X-ray scattering
- 6 Time-resolution luminescence
- 7 SR beam stabilization
- 8 EXAFS spectroscopy
- 10 Metrology/EXAFS in soft X-ray

SR experiments at VEPP-4

7-pole electromagnet wiggler Installed recently at VEPP-4

New experimental station for fast processes study

Beam lines in the VEPP-4 SR experimental hall

Nuclear physics at VEPP-3

Experiments with internal gas target (H or D, polarized or unpolarized) have been carried out for many years

Beam integral collection

Detector schematically and in reality

Extracted e⁻ gamma test beams for methodology

Electrons circulating in VEPP-4M produce gamma rays, which can be used directly or generate e⁺e⁻ pairs to calibrate detector components

	e	γ
E, GeV	0.1 ÷3.0	0.1 ÷3.0
$\sigma_E/E, \%$	0.5 ÷5.0	~ 1
Intensity, Hz	10 ÷1000	1000
Resolution, mm	0.5	-

Test beams parameters

Cherenkov light focusing by the aerogel with varied refraction index

Precise polarization experiments

- New Touschek polarimeter is commissioned. The registration efficiency is increased by an order of magnitude.

- Total count rate at 2 mA beam current is now 1.5-2.0 MHz (was 0.1-0.2 MHz).

- An absolute record 1.5-10⁻⁹ accuracy of the measurement of depolarization frequency is achieved.

- For CPT test experiment, the 10⁻⁸ accuracy of comparison of the electron and positron spin frequency is real now.

"Nano- resolution": scan rate = 2.5 eV/s relative error ~10⁻⁹

Touschek count rate vs beam energy

- Touschek count rate has been measured in a wide energy range at the same machine.
- The degree of energy dependence measured is -2.2 ± 0.2 for the counting rate normalized by the bunch current squared and multiplied by the ratio of the reference beam volume (at 1.85 GeV) to the actual one.
- Théoretical estimations give the corresponding degree of -3.5.
- In accordance to the experiment, one can rely on 12 kHz count rate of Touschek particles at 5 GeV and 10 mA of the beam current.
- The rate is sufficient to apply the Touschek polarimeter for the RD technique.

Resonance crossing observation

A unique SR monitor – Fast Beam Profilometer allows us to observe the transverse beam profile evolution in a turn-by-turn manner during 10¹⁷ turns. As an example of the device potential, the resonance crossing experiment results are shown below:

X-s beam rotation for ultra-short bunch generation

Beam tilt develops in 1/2 of synchrotron oscillation after transverse kick

VEPP-4M

Longitudinal feedback system

started.

Longitudinal feedback system ON/OFF

VEPP-4M

Transverse bunch-by-bunch feedback system

Transverse bunch-by-bunch digital feedback to suppress the TMCI (fast head-tail) instability limiting the VEPP-4M single-bunch current.

Energy, GeV	1.8 – 5.2
Number of bunches	2 x 2
Design bunch current	40 mA
Number of kickers	4
RF power per kicker	400 W

With the feedback ON, a beam with current ~ 3 times exceeding the TMCI threshold has been injected.

Longitudinally polarized beams

(Project for VEPP-4: 1981, 1983)

SR source in the VEPP-4 tunnel

Super $C\tau$ Factory Prototype (from ϕ to ψ)

Crab Waist e^+e^- Factory providing in the energy range from 0.5 GeV to 1.55 GeV the peak luminosity from 10³⁴ to 5x10³⁴ cm⁻²s⁻¹

Energy per beam E (GeV)	0.5	1	1.55
Emittance ϵ_x (nm)	10	4	2.5
Hor.damping τ_x (ms)	70	30	15
Bunch length σ_s (mm)	9	5	4
Energy spread $\sigma_E \times 10^3$	1.3	1	0.96
RF voltage U _{RF} (MV)	0.26	1	2.2
Particles per bunch $n_b \times 10^{10}$	1.4		
Lifetime Touschek τ_T	1000	2000	3000
BB parameter ξ _y	0.06	0.12	0.12
Luminosity (cm ⁻² s ⁻¹) × 10 ³⁴	1	5	6

Summary

• Since 2002 VEPP-4 collider with detector KEDR provides worldclass results for HEP community

• Many other experimental programs (SR, nuclear physics, test beam, accelerator physics study, etc.) are successfully performed at the accelerator facility

• Different scenarios of the future studies at VEPP-4 (or with the help of its infrastructure) are considered intensively

Co-authors

A.Aleshaev, V.Anashin, O.Anchugov, V.Blinov, A. Bogomyagkov, D. Burenkov, S. Vasichev, S. Glukhov, Yu. Glukhovchenko, O. Gordeev, V. Erokhov, K. Zolotarev, V. Zhilich, A. Zhmaka, A. Zhuravlev, V. Kaminsky, S. Karnaev, G. Karpov, V. Kiselev, E. Kravchenko, G. Kulipanov, E. Kuper, G. Kurkin, A. Medvedko, O. Meshkov, L. Mironenko, S. Mishnev, I. Morozov, N. Muchnoi, V. Neifeld, I. Nikolaev, D. Nikolenko, I. Okunev, A. Onuchin, A.Petrenko, V.Petrov, P. Piminov, O. Plotnikova, A. Polyansky, Yu. Pupkov, E. Rotov, V. Sandyrev, V.Svistchev, I. Sedliarov, E. Simonov, S. Sinyatkin, A. Skrinsky, V. Smaluk, E. Starostina, D. Sukhanov, S. Tararyshkin, Yu. Tikhonov, D. Toporkov, G. Tumaikin, I. Utyupin, A. Khilchenko, V. Tsukanov, V. Cherepanov, A. Shamov, D. Shatilov, D. Shvedov, S. Shiyankov, E. Shubin, I,Churkin