Acceleration Technique Developed at JINR for Hadron Therapy

E.Syresin

Joint Institute for Nuclear Research, Dubna, Russia

On behalf of following teams :

Phasotron medical beam team: A. Agapov, E.Luchin, A.Molokanov, G.Mytsyn, S.Shvidkij, K. Shipulin

C235-V3 cyclotron team: S. Gurskij, G. Karamysheva, M. Kazarinov, S. Kostromin, S. Korovkin, S. Mokrenko, N. Morozov, A. Olshevsky, V.

Romanov, E. Samsonov, N. Shakun, G. Shirkov, S. Shirkov, E.Syresin

Medical superconducting synchrotron team: E.Syresin, V. Mihailov, A. Tuzikov, N.Agapov, A.Eliseev, E.D. Donets, E.E. Donets, G. Hodshibagijan, V.Karpinskij, A. Kovalenko, A.Malahov, I.Meshkov, A.G. Olshevsky, G. Shirkov, S. Shirkov, G. Trubnikov

Electron string ion source team: D. Donets, E. D. Donets, E. E. Donets, V. Salnikov, V. Shutov, E.Syresin

C400 cyclotron team:V.Aleksandrov, S.Gursky, G.Karamysheva, N.Kazarinov, S.Kostromin, N.Morozov, E.Samsonov, G. Shirkov, V. Shevtsov, E.Syresin, A.Tuzikov

Electrostatic storage ring team: E.Syresin, S.Shirkov.

HADRON THERAPY IN WORLD AND IN RUSSIA

There are about 30 centers of the proton therapy and 5 centers of carbon therapy at the world now. About 100 thousand patients were treated with application of hadron therapy during last 50 years, 60 % of them were treated over last 10 years and 90% of total patients now treated in the hospital based facilities.

2.3 million of tumor patients there are in Russia 450 thousands of new patients are appeared per year.

The proton therapy is recommended 50 thousands of patients per year in Russia.

JINR Medical-Technical Complex on proton beams of synchrocyclotron

1967 – First investigations at cancer treatment: 1968 – 1974 – 84 patients was irradiated by proton beams on synchrocyclotron; <u>1975 – 1986</u> – Upgrade of synchrocyclotron, creation of Medic-**Technical Complex (MTC) of hadron** therapy in JINR; <u>1987–1996–40 patients were radiated</u> by proton beams; <u>1999,</u> – Creation of radiological department in Dubna hospital; <u>2000 – 2012,</u> – 883 patients were radiated by proton beam.

During last years around 100 patients per year were radiated by proton beam in JINR Medical-Technical Complex in frame of research program of Medical Radiological Research Center of Russian Medical Academy of Science.

More than 1000 patients were treated by the JINR proton beams

JINR PHASOTRON MEDICAL PROTON BEAMS

Cancer treatment in cabin №1 3D conformal proton beam treatment were realized in Russia only in JINR.

3D conformal proton therapy in JINR

Plan of proton treatment of meningiomas

MRI before treatment(center) and 1 year later after treatment (right)large reduction of meningiomas volume

Treatment of brain astrocytomas by proton beams

JINR treatment by medical proton beams in 2000-2012

Meningiomas (Менингиомы)	157
Chordomas, chordosarkomas (Хордомы и хондросаркомы основания черепа)	28
Chordomas (Хордома позвоночника)	3
Gliomas (Глиомы)	54
Lymphoma (Лимфома)	1
Acoustic Neurinomas (Невриномы слухового нерва)	14
Astrocytomas (Астроцитомы)	38
Paragangliomas (Параганглиома)	6
Pituitary Adenomas (Аденомы гипофиза)	23
AVMs (Артерио-венозные мальформации)	71
Brain and other metastasis (Метастазы в мозг)	72
Other head and neck tumors (Опухоли головы и шеи)	238
Melanomas (Меланомы)	14
Skin diseases (Рак кожи)	51
Carcinoma metastasis of the lung (Опухоли легких)	7
Breast cancer (Рак молочной железы)	48
Brain cancer (Опухоли мозга)	8
Prostate Adenomas (Рак простаты)	1
Sarcomas (Саркомы)	15
Other (другие)	34
Total	883

Federal High Technology Center of Medical Radiology (Dimitrovgrad, Ulyanovsk reg.)

E.Syresin et al, IPAC11, p.2706.

The Federal high technology center of medical radiology involves: Center of Proton therapy

PET Center

The center consists of two gantry systems, a medical treatment room with a fixed beam, an eye treatment room and a PATLOG system of preliminary patient positioning.

The JINR-IBA collaboration hasdeveloped and constructed theC 235-V3 proton cyclotron for thiscenter.

Equipment of Dimitrovgrad proton center for proton therapy was certificated first time in RF. The Project of the Center of proton therapy was developed by Federal Medico-Biological Agency in collaboration with JINR

Planed Centers of Proton Therapy, realized in frame of Russian Federal program:

DimitrovgradObninskTomsk

Production of medical proton cyclotron in JINR

E.Syresin et al, Physics of Particle and Nuclear Letters, 2011, v. 8 p.379

JINR-Ion Beam Application (IBA, Belgium) collaboration since 2007 starts development of essentially modified version of IBA serial cyclotron C235 so called cyclotron C235-V3 applied for hospital centers of proton therapy. C235-V3 cyclotron is superior in its parameters to the IBA

C235 serial medical proton cyclotron of previous generations installed in 16 hospital centers in the world. The further improvement of cyclotron C235-V3 parameters is expected also in frame of JINR-IBA research works

proposed by JINR

2010–C235-V3 construction was completed June 2011 г. – Start of assembling and tests of cyclotron in Dubna

September 2012 - Delivery of cyclotron in Dimitrovgrad hospital center of proton therapy

Accelerators for JINR members countries

Cyclotron C235-V3 produced by JINR-IBA collaboration

General parameters	Value
Proton energy, MeV	235
Internal current, nA	300
Beam emittances,	12/11
π·mm·mrad	
Magnetic field (min/max) T	0.9/2.9
Number of sectors	4
Magnet diameter, m	4.3
Radius of beam extraction,	1,08
m	
Elliptical hill gap, cm	9,6/0,9
Duant aperture, cm	2
RF frequency, MHz	106.1 (4
	harmonic)
Dee voltage, (min/max) kV	60/130
Ion source	PIG, internal
Electrostatic deflector field,	170
kV/cm	
Extraction efficiency, %	60
Power, kW	446
Weight, t	220

JINR engineering center for assembling and tests of medical accelerators. FLNR JINR Cyclotron for filter production applied for blood plasmoferese (forward plan). DLNP JINR cyclotron for proton therapy (behind plan)

Medical proton cyclotron C235-V3 in JINR

Shimming of JINR-IBA medical cyclotron C235-V3

Difference between formed and isochronous field (red), integrated RFphase shift (blue). New technologies realized in JINR at magnetic shimming of C235-V3

Special platform for mechanical fabrication with diameter of 1 m was constructed instead IBA platform diameter of 2 m Special 3D Carl Zeiss machine provided sector edge surface measurements with μ m accuracy was incorporate in shimming technology

The new JINR 2.9 T calibration dipole magnet instead 2.5 T IBA magnet

The new system for measurement of the average radial component

Beam Tests of JINR-IBA cyclotron C235-V3

Amplitude of axial incoherent oscillations and axial coherent beam displacement before and after correction correction of Qz-drop at 100mm

Transmission from r=300mm to 1030 mm is 72%. Then circulating beam was extracted by the electrostatic deflector (60kV voltage, 3mm deflector gap). Extraction efficiency is 62%. Thus, the total efficiency of C235-V3 is 45%.

Qz-drop at 100mm in C235-V3

Average radial Br component

MODIFIED CYCLOTRON C235-V3

Improvement of extraction efficiency from 50% to 75% with new extraction system

Advantages of C235-V3 with high intensity of proton beam are important:

Parameter	C235	C235-V3
Optimization of magnetic field at	no	Modificati
modification of sector		on of
		sector
		azimuthal
		angle at
		R>80
Vertical betatron frequency at R>80	Qz=0,25	Qz=0,45
Vertical coherent beam	4 mm	2-3 mm
displacement related to median		
plate effects		
Beam losses at proton	50%	25%
acceleration with out installed		
diaphragm		
Beam losses at extraction	50%	25%
Br-component measurements,	No	yes
reduction of median plane effects		-
Reduction of radiation dose of		by 2-3
cyclotron subsystems		times

* at treatment of large volume tumors with application of pencil beam scanning system;
*at treatment technology with large dose per irradiation fraction and small number of fractions;

*at reduction of radiation dose of cyclotron subsystems at operation

BEAM CURRENT MODULATION

The current modulation of extracted proton beam at a frequency up to 1 kHz gives main advantage at realization of Pencil Beam Scanning (Intensity Modulated Proton Therapy)

Beam modulation by vertical deflector plate at 1 turn.

Beam intensity variation in IBA proton cyclotron C235

Three steps of beam intensity variation at HIMAC RF-knockout extraction technique in medical synchrotrons provides beam intensity modulation up 1 kHz. However the spill ripple is around $\pm 10\%$ in this case

Proton –ion therapeutic complex (PITC) applied for carbon ion therapy

- Adventures of ion carbon therapy:
- Carbon ions are especially efficient for radio resistant tumors
- •Carbon ions produces by 4 times less dose irradiation of normal tissues comparing with X-ray radiation, at same irradiation dose in tumor.
- Carbon ions produces by 2 times less dose irradiation of normal tissues comparing with protons.

Nuclotron technologies as basis of superconducting medical synchrotron for hadron therapy

Nuclotron –JINR superconducting synchrotron

Nuclotron superconducting dipole magnet

Parameters of medical synchrotron		
Ion source	«Krion»	
Linear accelerator	RFQ &IH	
Circumference	69.6 m	
Injection energy	4 MeV/n	
Max. ion energy at A/Z=0.5	400 MeV/n	
Max. magnetic field n	1,8 T	
Magnetic field rate dB/dt	3.6 T/s	
Repetition frequency	1 Hz	

Complex of ion therapy on the basis of superconducting synchrotron

E. Syresin et al, Physics of Particle and Nuclear Letters, 2012, v.9, p.328

Injection/maximal energy	4,2/400 MeV/u
Maximal/ injection magnetic rigidity	6,36/0.59 T·m
Circumference	69,6 м
Columnlimitofintensity at injection	6·10 ⁹ p/cycle
Betatron tune shift	0,02
Number of turns at injection	20
Injection efficiency	50 %
Time of synchrotron acceleration	0.5 s
Slow extraction time	(0,5 -10) s
Extraction efficiency	96%

Extraction from synchrotron

Multiturn injection in synchrotron

11500

Superperiod of synchrotron

17400

Betatron tunes	3,25	Parameters of medical ion synchro		
Chromaticity DQ _x /(Dp/p)	-3,1	Number of superperiods/FODO	4/12	
$DQ_{z}/(Dp/p)$	-3,2	periods		
Parameter of orbit compaction	0,053	Number of dipole magnets/	32/24	
COD, mm	3	quadrupole lenses		
Horizontal/Vertical acceptance,	180/70	Magnetic field at	0.17/1.8 T	
π·mm·mrad		injection/maximal field	0,1771,01	
Emittance of injected beam,	10	Rate of magnetic field	3,26 T/s	
Emittances of accelerated beam	20/1,5	Maximal/injection gradients in F lenses	8,5/0.8 T/m	
$\underline{\varepsilon_{x}}, \underline{\varepsilon_{z}}, \pi \cdot \mathbf{mm} \cdot \mathbf{mrad}$	0 = /1 =	Maximal/injection gradients in	-7,5/-0,7	
Emittance of extracted beam	0.5/1,5	D lenses	T/m	
$\varepsilon_{x/}\varepsilon_{z}$, π ·mm·mrad	10.2	Curvature radius in dipole	2.52 m	
Relative momentum spread	$\pm 10^{-3}$	magnets	3,33 III	
Relative maximal momentum spread	$\pm 2 \times 10^{-3}$	Sagitta in dipole magnets	8,7 mm	

Beam delivery system

The beam delivery system consists of following sections:

the extraction section;

the foil section provided equal beam emittances in both transverse planes; the accommodation section;

the section for beam delivery in the cabin;

the section of beam transportation between the medical cabins;

the isocentric gantry;

the channel with fixed beam position cabin.

The compact carbon gantry JINR-IBA collaboration

Gantry		
Weight, t	156	Ţ.,
Diameter, m	9.2	• • • •
Length, m	12,7	ਜਿਸ
Scanning area in	20×20	
isocenter, cm		
Gantry rotation angle,	180	÷
degree		•••
Positioner rotation angle,	180	<u>.</u>
degree		· • ;
Main dipole magne	et	Ŀ,
Magnetic field, T	3.2	
Magnetic field rate,	1	-27
T/min		
Bending radius, m	2	
Weight, t	28	

The application of superconducting gantry permits to increase number of recommended for carbon treatment cases from 7% up 30%

Carbon treatment and on-line dose verification at application of primary radioactive ions ¹¹C⁶⁺

JINR-National Institute of Radiological Science (NIRS, Japan) collaboration

- E.D. Donets et al, IPAC10, THPEC066.
 - On-line dose verification at carbon treatment by high intensive radioactive ¹¹C⁶⁺ ion beams
 - High radioactive ion intensity ¹¹C⁶⁺ required for cancer treatment and simultaneously on-line PET tomography
 - High resolution at direct application of primary radioactive ¹¹C⁶⁺ ion beam comparing with radioactive secondary beams produced in tumor target. secondary ¹¹C⁶⁺ beams primary ¹¹C⁶⁺ beams

simultaneously for carbon treatment and PET LPhHE, JINR at leadership of Prof. E.Donets

E.Donets, RUPAC12, FRYOR02

- Realization of ISOLDE scheme for formation of radioactive ion ¹¹C beams
- Production and separation of radioactive gas containing isotope of ¹¹C
- Radioactive gas loading in ESIS at an intensity of 5×10¹²molecules with a repetition time of 20 min
- Extraction of radioactive ion beam at an intensity of 5×10⁹ ppp of ¹¹C⁴⁺ or ¹¹C⁶⁺
- Conversion efficiency of molecules contained ¹¹C into ¹¹C⁴⁺ corresponds to 25-30% and 15% into ¹¹C⁶⁺

Ion source	Krion-2	Krion-
	C ⁴⁺	5 T
		C ⁴⁺
Electron energy,	3-5	5-7
keV		
Number of	6 ·10 ¹⁰	3 ·10 ¹¹
electrons		
Magnetic field, T	3	5
Number of	2·10 ⁹	6·10 ⁹
extracted ions		
per pulse		
Injection	0.3-1	0.3-1
frequency, Hz		
Gas pulse injection	2	1
time, ms		
Ionization time, ms	6	2

Project parameters of primary radioactive carbon ion beam produced at ESIS injection in HIMAC

Spectrum of charged ions (H+, C5+, C4+, C3+ pics).

Ion charge and its derivative versus of time at 2 ms heating pulse and ion accumulationionization time 10 ms. Project parameters of primary radioactive carbon ion beam produced at ESIS injection in HIMAC

Methane target			
Number of produced ¹¹ CH ₄ molecules	4·10 ¹²		
Methane loading cycle, min	20		
Ion source parameters			
Number of methane molecules used per		4·10 ¹⁰	
pulse injection			
Methane conversion efficiency into ions, %		15	
Number of produced ions per pulse		6·10 ⁹	
Linac			
Linac and striping efficiency of ¹¹ C ⁴⁺ ,%		80	
Injection current, μA		45	
Injection emittance at 6 MeV/u, π·mm·mrad		2	
Number of injection turns)	
Injection time, µs		120	
Injection efficiency, %		60	
Synchrotron			
Number of ions in coasting mode		2.8·10 ⁹	
Horizontal emittance, π ·mm·mrad		80	
Number of accelerated ions		2.2·10 ⁹	
Number of ions produced for scanning		2·10 ⁹	
irradiation per injection-extraction cycle			
Number of extracted ions per second	108		

Formation of low energy electron and biomolecular ions in JINR-NIRS (Japan) collaboration

T.Tanabe, K.Noda, E.Syresin, NIMA 532 (2004) p.105 E.Syresin, S.Shirkov, Phys. of Particle and Nuclei Letters (2011), v.8, p.978

Interaction of low energy electron and biomolecular ions in electrostatic ring

JINR-NIRS (Japan) collaboration

Interaction of the delta-electrons with DNA molecules is one of the important mechanisms realized in process of the hadron therapy.

Neutral production particle rate as a function of relative energy .

- Arginine (Arg) (MW: 0.17 kDa) amino-acid;
- bradykinin (MW: 1.06 kDa)- peptide which consists of 9 amino-acids

Double strand break of DNA at irradiation of X-rays C-ions

Interaction of electrons with DNA ions

THANKS FOR YOU ATTENTION