
CONCEPT OF THE SOFTWARE FOR ITEP-TWAC CONTROL SYSTEM

P. Alekseev, F. Sizov, ITEP, Moscow, Russia

Abstract
The work is in progress on development of new control

system for ITEP accelerators complex. All software for
the system should be developed from very beginning.
Core element of new software is PostgreSQL object-
relational database management system. All interactions
between programs on device side and on operator side are
made utilizing the database functionality. The database is
also provides storage space for all configuration data,
operational modes, logs and so on.

INTRODUCTION
ITEP accelerators complex is located in several

buildings in the area of the institute. Control functions
should be available for staff located at main control room
and at local control panels of subsystems. In addition,
diagnostic signals and some control parameters should be
accessible from outside the complex. Therefore, the
control system will be distributed and multiuser.

Common architecture of the control system is shown on
Fig. 1. Offered structure allows connecting to the system
almost any equipment with any known control interface.
Supposed that the equipment may be industry
manufactured or self designed.

Figure 1: Common control system structure.

Front-end programs that user interacts with, may be
called from the LAN or even from internet using the web
server. Back-end software that interacts with control
objects, executes on industrial PCs or on the database
server.

The investigation of capabilities of various software
products was made relative to our problem. The results
coupled with existing resources and expertise allows to
offer configuration of software described below.

Control of data flows between front-end and back-end
software is implemented by PostgreSQL database. In
addition, the database is used to store all the information
related to the control system. Main functions of the
database are illustrated in Fig. 2.

Figure 2: Database functions.

DATABASE STRUCTURE
There are three types of objects are used to describe the

control system structure. These are daemons, devices and
channels. Database table DAEMONS contains data about
all back-end programs of the control system. Equipment
of the control system should be described in the
DEVICES data table. Each device such as communication
port, dac board, peripheral module etc. has its own
database record.

All the physical parameters of the control system are
presented as channels. Database table CHS contains an
information that used by front-end programs to configure
control elements. Each channel should be linked to device
that operates with it.

A set of tables that are used in the database to describe
all the objects of the control system are shown in Fig. 3.

WEPPD043 Proceedings of RUPAC2012, Saint|-|Petersburg, Russia

ISBN 978-3-95450-125-0

638C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Control and diagnostic systems

Figure 3: Configuration data.

Tables DAEMON_LINKS and DEVICE_LINKS
allows to define what software should service the device
and how the devices linked to one another. This way is
possible to describe any hierarchy of devices.

The channels could be combined into groups, database
tables GROUPS and GROUP_LINKS provides this.
Groups of channels may be used to create modes of
operations, to handle sets of values etc.

Other database tables are used to store information
about the users, front-end programs, schedule, access logs
etc.

DATA MANIPULATIONS
The core element of the control system software is an

algorithm for requests processing and transfer of
responses. This algorithm could be implemented using
native PosgreSQL asynchronous notification commands.
PostgreSQL offers asynchronous notification via the
LISTEN and NOTIFY commands [1]. A client session
registers its interest in a particular notification condition
with the LISTEN command. All sessions listening on a
particular condition will be notified asynchronously when
a NOTIFY command with that name is executed by any
session.

We could not find similar functionality in the other
database management systems. Sometimes it may be
implemented by using server and client programming. In
our case, application of PostgreSQL allows to minimize
programming time because all the functions are present
already.

Changing Parameters Values
Actually we should consider two types of notifications

for each of two types of requests. First type of requests is

the request to change setting of a channel. Data flow
diagram for that request is shown on Fig. 4.

Figure 4: Data flow of control request.

Database table RCI_REQ is responsible for processing
of request for parameter changing. Client should insert its
request into this table with only channel id and new value.
This operation will trigger database function that finds id
of the back-end program, sends the notification to it and
writes some additional information about the request into
the database. Whenever the notification will be delivered
to the back-end it selects new tasks from RCI_REQ and
process them. If at one time more then one request will be
found in RCI_REQ only the recent one will be handled,
but all the clients that listen should be notified about the
changes. Data flow of daemon's response is illustrated on
Fig. 5.

Figure 5: Data flow of daemon response.

Database table RCI_DATA keeps actual values of all
the control system parameters. When any of the
parameters changed by request or by the other reason the
daemon, servicing the channel, should update
RCI_DATA. Such update will trigger database function
that notifies the clients, clears requests and may even

Proceedings of RUPAC2012, Saint|-|Petersburg, Russia WEPPD043

Control and diagnostic systems

ISBN 978-3-95450-125-0

639 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

store the operation details into the log. The only thing that
client shall do, receiving the notification, is to select new
value from RCI_DATA.

Data Acquisition
The other type of requests is request to get measured

values or collected data. The main difference from control
requests is that measurement requests from different
clients to the same channel should be serviced
simultaneously.

All the data collected from measuring channels are
stored in DAQ_DATA table. This table has field named
REQ that should be positive in case of any client is
waiting for new value of a channel. When REQ is set to
zero corresponding back-end program may stop the cycle
of measurements. Thus, the only thing that client should
do to start measurement is ensure that REQ is more than
zero by updating it with positive value. On the other hand,
REQ should be decreased by one each time the daemon
updates data.

To distinguish front and back-end commands on
DAQ_DATA, virtual table, so called "view", named
DAQ_REQ is used. DAQ_REQ should be updated only
by client programs while DAQ_DATA by daemons.

When client writes positive value into REQ field of
table DAQ_REQ triggered function that copies this value
into DAQ_DATA and sends notification to back-end
program. If at that moment the program is inactive it will
wake up and continue data acquisition procedure until any
of the channels linked to it has non zero REQ field. This
process is illustrated in Fig. 6.

Figure 6: Request for measurement

The second part of the data acquisition algorithm is
illustrated in Fig. 7.

Figure 7: Data ready notification

The same way as in control algorithm measured data is
placed into DAQ_DATA table. This operation triggers
the function that notifies clients and automatically
decreases the value of REQ or copies new value into log
table if needed.

CONCLUSION
All the algorithms and methods described was

implemented and tested on subsystems of old control
system. They were used to control master oscillators,
current sources for beam lines magnets, to broadcast of
diagnostics signals of U-10 proton synchrotron. It allows
to expect successful application of these methods in the
new control system.

It should be noted that the algorithms described may be
implemented rather simple inside the database with
minimal programming. The clients are utilize standard
database control functions to perform queries. Thus,
almost any programming language may be used to
interact with the system. It gives an opportunity to
involve wide range of specialist to development of the
control system software.

REFERENCES
[1] The PostgreSQL Global Development Group,

PostgreSQL 8.3.20 Documentation , 1996-2012,
http://www.postgresql.org

WEPPD043 Proceedings of RUPAC2012, Saint|-|Petersburg, Russia

ISBN 978-3-95450-125-0

640C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Control and diagnostic systems

