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Abstract
Study of the topic, along with other factors necessary to

understand the role of electron oscillations in the formation

of the synchrotron radiation. The above-mentioned prob-

lem is considered by the author in various periodic mag-

netic fields. Emergence of the correction terms to the an-

gular velocity of storage rings is also discussed.

At first let us take an axially-symmetric magnetic field

as the most extensively studied. In the neighborhood of

equilibrium orbit the magnetic field is chosen as

Hx = Hy = 0,Hz = br−n,

where b is the constant, r =
√

x2 + y2, n is the field gra-

dient (0 < n < 1). If rotH̄ = 0 one can concede that the

potentials in cylindrical coordinates take the form

Φ = 0, Ar = Az = 0,

Aϕ =
b

rn−1(2 − n)
[1 +

n(2 − n)
2r2

z2],

where ϕ is the azimuth angle. The relevant Hamiltonian H
for electron can be written as

√
m2c4 + c2p2

z + c2p2
r +

1
r2

c2p2
ϕ + e2A2

ϕ + 2ec
Aϕ

r
pϕ.

One of the Hamilton equations is

ϕ̇ =
∂H
∂pϕ

=
1
H (

c2

r2
pϕ +

ec

r
Aϕ),

where pϕ is the integral of motion.

Let us denote a small variable by ρ = r − R, where

the equilibrium radius R can be deduced on condition that

linear in ρ terms for Hamiltonian are absent (parabolic ap-

proximation). This gives

R = (
2 − n

1 − n

cpϕ

eb
)

1
2−n .

Restricting our selves to terms ρ2/R2, z2/R2, we can

obtain the angular velocity as

ϕ̇ = ω0(1 − ρ

R
+

3 − n

2
ρ2

R2
+

n

2
z2

R2
), (1)

where ω0 = ceH0/E is the frequency, energy E is the

constant, H0 = b/Rn. The well-known asymptotics for

oscillations have the form

ρ = A cos(
√

1 − nω0t+χ), z = B cos(
√

nω0t+ψ), (2)

where A andB are, respectively, the amplitudes of radial

and axial vibrations, χ and ψ are the initial phases. Total

velocity v = βc is also constant and

v = Rω0

√
1 + (1 − n)

A2

R2
+ n

B2

R2
.

Expressions (1) and (2) made it possible to solve the syn-

chrotron radiation problem [1] for given magnetic field. In

such a case it has been found an essential influence of ver-

tical oscillations on the spectral and angular properties of

radiation in agreement with experiment. Here we can take

only the linear terms and the accuracy was limited by deci-

sion (2).

Taking into account for oscillations the quadratic terms

one can obtain nonlinear equations

ρ̈ + (1 − n)ω2
0ρ =

ω2
0

2R
[(1 − n)(3 + n)ρ2 + n(1 + n)z2],

z̈ + nω2
0z = n(1 + n)ω2

0z
ρ

R
.

Resolving them by the iterated method we can find, for ex-

ample, an expression for radiation intensity [2] in a given

approximation

W = W0[(1 − n2

2
)
A2

R2
− n

3 − 2n + n2

2(1 − n)
B2

R2
],

where intensity for homogeneous magnetic field

W0 =
2
3

ce2

R2

β4

(1 − β2)2
.

Clearly formula (1) may be also derived from equation

d

dt
(r2ϕ̇) = − e0

mc
r(żHr − ρ̇Hz),

where the constant of integration is defined as ω0R
2.

In studies of radiation in the straight section accelerators

we expanded in a power series the transverse components

of magnetic field or gradient. Here an electron revolves on

orbit consisting of N periods, where one element of the

system includes a bending magnet of length a = 2πR/N
and free gap of length l. The length of entire orbit will be

2πR + Nl = 2πR0,

where R0 = (1 + k)R is the averaged radius, k = l/a. Af-

ter expansion in a series we can put n(τ) = f(τ)n, where

τ = Nϕ and the discrete function

f(τ) =
1

1 + k
[1 +

2(1 + k)
π

∞∑
ν=1

sin ντ1

ν
cos ν(τ − τ1)]
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with τ1 = πa/(a+l). This operator f(τ) is 1 on the section

with the magnetic field and 0 in the free gap.

The equation for the vertical oscillations of electron in

the linear approximation can be put into the form

d2z

dτ2
+

(1 + k)2

N2
nf(τ)z = 0. (3)

Solution of Eq. (3) may be sought as a series [3], where

n/N2 is the small parameter. In the long run it will be a

superposition of sinusoids and cosine curves with modu-

lated amplitudes.

For the radial vibrations one can substitute in Eq. (3) n
by 1−n. These radial oscillations are small compared with

the radius and have only a negligible impact on the radia-

tion properties. In this connection it may be assumed that a

particle moves along a circle with radius R0, and the guid-

ing magnetic field H can be averaged over the entire length

of the period. Because of the magnetic field components

take the form

Hz = H0[
1

1 + k
− ρ

R
nf(τ)],Hr = −H0

z

R
f(τ), (4)

where already ρ = r − R0. The angular velocity of this

motion can be represented by the expression

ϕ̇ =
ω0

1 + k
[1− ρ

R0
+

3
2

ρ2

R2
0

+
n

R2

∫
(zż−ρρ̇)f(τ)dt]. (5)

Coefficient 1/(1 + k) here is due to the straight sections.

For the FODO model (n > 1) the focusing and defocus-

ing segments have length a and are separated by field free

section of length l. Then the orbit length of N elements is

2πR + 2Nl = 2πR0.

Expanding n(ϕ) in a Fourier series, we get

n(τ) =
4n

π

∞∑
ν=0

sin(2ν + 1)τ2

2ν + 1
cos(2ν + 1)(τ − τ2),

where τ2 = πa/(2(a+ l)). In this case one can use the Eq.

(3) and suppose that the parameter n/N2 is else small. The

guiding magnetic field will be more properly as

Hz = H0[
a

a + l
+ Φ1(τ)],

where

Φ1 =
2
π

∞∑
ν=1

sin 2ντ2

ν
cos 2ν(τ − τ2).

Then in Eq. (5) we must add the correction

ω0

1 + k

∫
ρ̇

R
(1 +

ρ

R
)Φ1(τ)dt.

For storage rings we shall restrict our consideration to

the case of the triplet achromat lattice [4]. It has the defo-

cusing quadrupole of length a1, then focusing quadrupoles

of a long and bending magnet of length d lie on each side.

The total run of lattice is

L = a1 + 2(a + d + l1 + l2 + l3),

where li is the length of free shifts. Let us denote the mag-

netic field of dipole by Bz = B, the lens constant by g, the

small radial vibrations by x instead of ρ. The transverse

components of magnetic field are

Hz =
2d

L
B − Φ2(τ)gx + Had, Hr = −Φ2(τ)gz,

where

Φ2(τ) =
2a − a1

L
+

2
π

∞∑
ν=1

(−1)ν

ν
·

[2 sin τ3a cos τ3(2l1 + a + a1) − sin τ3a1] cos ντ,

with τ3 = πν/L.

Besides the part of guiding field is

Had =
4B

π

∞∑
ν=1

1
ν

sin τ3d cos τ3(d + 2l3) cos ντ,

which disappears after averaging. Eq. (5) is complemented

by expression

ωq
2a − a1

2L
(
z2

R2
0

− x2

R2
0

)

and nω0f(τ)/((1 + k)R2) is replaced by ωqΦ2(τ)/R2
0,

where ωq = e0gR/(mc), k = (L − 2d)/(2d).
The vertical oscillations are described by linear equation

d2z

dτ2
+

C

N2
Φ2(τ) · z = 0, (6)

where C = (1 + k)ωq/ω0. Note that parameter C/N2 >>
1 and the quest of solution is a challenging task. It should

also be pointed out that the expressions (3) and (6) is the

Hill equations.

The used procedures are first of all stipulated by a ne-

cessity to investigate the synchrotron radiation character-

istics in accelerators. Formulas (1) and (5) illustrate that

ϕ̇ is different in the various points of particle trajectory.

Thus it was established that the angular velocity of parti-

cle is defined by the structure of concrete magnetic system.

Proposed approach can be developed further and move to

nonlinear problems.
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