Paper |
Title |
Page |
THXCH02 |
The Development of Synchrotron Radiation Source of NRC "Kurchatov Institute" |
126 |
|
- V. Korchuganov, A. Belkov, Y.A. Fomin, E.V. Kaportsev, G.A. Kovachev, M.V. Kovalchuk, Y.V. Krylov, K. Kuznetsov, V.V. Kvardakov, V.V. Leonov, V.I. Moiseev, V.P. Moryakov, K. Moseev, N.I. Moseiko, D.G. Odintsov, S.G. Pesterev, Yu.F. Tarasov, S.I. Tomin, V. Ushkov, A.G. Valentinov, A. Vernov, Y.L. Yupinov, A.V. Zabelin
NRC, Moscow, Russia
|
|
|
Russia's first dedicated SR source based on electron storage ring Siberia-2 entered service in late 1999, Kurchatov Institute, Moscow. The report focuses on the consumer parameters of an electron beam and the further development of actual SR source, SR beam lines and experimental stations in 2012.
|
|
|
Slides THXCH02 [5.459 MB]
|
|
|
WEPPC035 |
System of Vacuum Monitoring of Synchrotron Radiation Source of National Research Center Kurchatov Institute |
518 |
|
- N.I. Moseiko, V. Korchuganov, D.G. Odintsov
NRC, Moscow, Russia
- Y.V. Krylov, L.A. Moseiko, A.V. Shirokov
RRC, Moscow, Russia
- B.I. Semenov
RRC KI, Moscow, Russia
|
|
|
The source of synchrotron radiation of National Research Center Kurchatov Institute (KCSR) consists of the main ring on energy of electrons of 2.5 GeV, the booster ring on the maximum energy of 450 MeV and 80 MeV linac. The project of upgrade of KCSR vacuum system, including transition to new power supplies for sputter ion pumps is developed and is implemented. The vacuum system provides vacuum of 0.1 mkPa. The new vacuum system is developed on the basis of the modern high-voltage power supply of the VIP-27 type controlled by the interface units of the BUP-27 type, is placed in standard crate 3U Euromechanics. VIP-27 is controlled the four pumps of PVIG 250/600 type. The vacuum system is controlled from the Pentium computer on the CAN bus. Now the upgraded system serves about 100 vacuum pumps. Power supply unit provides voltage up to 7 kV. The vacuum monitoring is provided by measurements of the current of the power supply unit in the range of 0.0001-10 mA. The status display and the data archive based on MS SQL Server.
|
|
|
WEPPD052 |
Modernization of the Automated Control System in the Kurchatov Synchrotron Radiation Source |
659 |
|
- E.V. Kaportsev, V. Dombrovsky, Y.V. Efimov, V. Korchuganov, Y.V. Krylov, K. Moseev, N.I. Moseiko, A.G. Valentinov, Y.L. Yupinov
NRC, Moscow, Russia
|
|
|
The running cycle of Kurchatov Synchrotron Radiation Source (KSRS) includes the injection of electrons with energy 80 MeV from the linear accelerator in the booster storage ring Siberia-1, the accumulation of a electron current up to 300 mA and, then, electron energy ramping up to 450 MeV with the subsequent extraction of electrons in the main ring, storage ring Siberia-2, and accumulation there up to 200 mA, and at last the energy ramping up to 2.5 GeV. The current automated control system (ACS) of the accelerating-storage complex (ASC) "SIBERIA" was established more than 20 years ago on the basis of the control equipment in the CAMAC standard. It is physically and morally outdated and does not meet modern requirements for speed, accuracy and speed of data transmission. This paper presents some options for replacing the old control system ESC to more modern components, using high-speed processor modules VME, and high-speed industrial network CAN.
|
|
|
WEPPD053 |
New Electron Beam Reference Orbit Measurement System at Dedicated Synchrotron Radiation Light Source SIBERIA-2 |
662 |
|
- Y.A. Fomin, V. Korchuganov, A.G. Valentinov
NRC, Moscow, Russia
- R. Hrovatin, P. Leban
I-Tech, Solkan, Slovenia
- N.I. Moseiko
RRC, Moscow, Russia
|
|
|
The paper focuses on the project of the electron beam closed orbit measurement system at SR source SIBERIA-2 realizing at present time at Kurchatov Institute. The main purpose of new closed orbit measurement system creation is an improvement of the electron beam diagnostic system at storage ring. In addition, it will be a part of fast feedback system which will damp the distortions of the closed orbit at SIBERIA-2. This system provides continuous measurements of the electron beam closed orbit during storing, ramping and operation for users. Besides, with the help of the system it is possible to carry out turn-by-turn measurements of the electron beam trajectory during injection process. The paper describes the new orbit measurement system, the principle of operation and its technical characteristics.
|
|
|