Paper |
Title |
Page |
TUBCH02 |
Simulation of Beam Dynamics in the Extraction System of the JINR Phasotron |
76 |
|
- S.A. Kostromin, A. Chesnov, S.G. Shirkov
JINR, Dubna, Moscow Region, Russia
- L.M. Onischenko
JINR/DLNP, Dubna, Moscow region, Russia
|
|
|
Beam dynamics is studied in the extraction by the regenerative method from the JINR Phasotron (657 MeV, 3 mkA protons) using special complex of computer programs. Parameters of the beam at the deflector entrance are calculated. The beam extraction efficiency is found to be ~40%. The mean movement in the extraction channel is investigated. Calculated beam transverse parameters agree with the experimental ones to accuracy of~20%.
|
|
|
Slides TUBCH02 [2.223 MB]
|
|
|
FRBCH01 |
Development of the IBA-JINR Cyclotron C235-V3 for Dimitrovgrad Hospital Center of the Proton Therapy |
221 |
|
- S.A. Kostromin, S. Gurskiy, G.A. Karamysheva, M.Y. Kazarinov, S.A. Korovkin, S.P. Mokrenko, N.A. Morozov, A.G. Olshevsky, V.M. Romanov, E. Samsonov, N.G. Shakun, G. Shirkov, S.G. Shirkov, E. Syresin
JINR, Dubna, Moscow Region, Russia
- P. Cahay, Y. Jongen, Y. Paradis
IBA, Louvain-la-Neuve, Belgium
|
|
|
The Dimitrovgrad project, the first Russian hospital center of the proton therapy, was approved in 2010. The JINR-IBA collaboration developed and constructed the C235-V3 proton cyclotron for this center. The assembly and the beam tests of the machine were done in 2011-2012 in special experimental hall in JINR. This cyclotron is a substantially modified version C235-V3 of the IBA C235 serial cyclotron. C235-V3 has the improved extraction system which was constructed and tested. This system allows raise the extraction efficiency up to 77% from 50% in comparison with serial C235. Special mapping system (for Br-component) of the magnetic field was developed and constructed by JINR for the shimming of the Br-field in the middle plane of the cyclotron. Tests with accelerated and extracted beam were performed in August 2012 in JINR. Beam vertical motion in the cyclotron is in the acceptable limits (ΔZbeam≤3 mm). Transmission from r=300mm to 1030 is 72% without beam cutting diaphragms. This allows reduce irradiation dose of the machine elements in comparison with serial C235. Extraction efficiency is 62%. Total efficiency of the machine is 45%. Recommendations are formulated to modify the magnetic system and reduce sensitivity of the machine to the magnetic field imperfections. Most of changes concerned with the increasing of the vertical focusing at the final radii.
|
|
|
Slides FRBCH01 [6.282 MB]
|
|
|
MOPPA017 |
Collider of the NICA Accelerator Complex: Optical Structure and Beam Dynamics |
278 |
|
- O.S. Kozlov, A.V. Eliseev, H.G. Khodzhibagiyan, S.A. Kostromin, I.N. Meshkov, A.O. Sidorin, G.V. Trubnikov
JINR, Dubna, Moscow Region, Russia
|
|
|
Accelerator complex NICA, developed in VBLHEP JINR, must provide an ion-ion (Au79 +) and ion-proton collisions at energies of 1-4.5 GeV/u, as well as experiments on collisions of polarized proton-proton and deuteron-deuteron beams. The calculations of the optical properties of superconducting collider rings have been aimed to create appropriate conditions for the collisions of beams and obtaining the required luminosity parameters in the working range of energies. The collider characteristics and the beam dynamics have been worked out in most for ion-ion mode of the complex.
|
|
|
WEPPD002 |
Simulations and Design of THz Wiggler for 15-40 MeV FEL |
569 |
|
- E. Syresin, S.A. Kostromin, R.S. Makarov, N.A. Morozov, D. Petrov
JINR, Dubna, Moscow Region, Russia
|
|
|
The electromagnetic wiggler is applied for narrow-band THz radiation in the 30 mkm to 9.35 mm wavelength range. This is a planar electromagnetic device with 6 regular periods, each 30 cm long. The end termination pattern structure is +1/4,-3/4,+1,…,- 1,+3/4,-1/4. This structure is more appreciable for compensation of the first and second fields, especially, to provide the small value of of second integral of 500 G*cm2. The peak magnetic field is up to 0.356 T, it is defined by large wiggler gap of 102 mm and available capacity of water cooling system of 70 kW. The parameter is varied in the range K=0.5-7.12 corresponding to a field range B=0.025-0.356 T peak field on axis. The wiggler is used in 15-40 MeV at beam currents up to 1.6 mA. The bunch compression scheme allows the whole wavelength range to be covered by super-radiant emission with a sufficient form factor. The wavelength range corresponds to 217 mkm - 9.35 mm at electron energy of 15 MeV, it is equal to 54 mkm - 2.3 mm at electron energy of 30 MeV and it is 30 mkm - 1.33 mm at electron energy of 40 MeV. The 3D Opera simulations and design of THz wiggler is under discussion.
|
|
|