

Overview of the NSLS-II Control System

Nikolay Malitsky

on behalf of NSLS-II Control Group

Control: B. Dalesio, G.Carcassi, D. Dohan, J. Shah, G. Shen, Y. Tian, Z. Yin

AP: J. Bengtsson, T. Shaftan

Outline

Overview of the NSLS-II Project

Control System

- Scope
- Requirements
- Standards
- Infrastructure

Areas For Technical Development

- Embedded Device Control
- IRMIS: Integrated Relational Model of Installed Systems
- High Level Applications

Concluding Remarks

Evolution of average brightness

NSLS-II vs Synchrotron Light Sources

NSLS-II Design Features

Design Parameters

- 3 GeV, 500 mA, top-off injection
- Circumference 791.5 m
- 30 cell, Double Bend Achromat 15 high- β straights (9.3 m) 15 low- β straights (6.6 m)

Novel design features:

- Damping wigglers
- Soft bend magnets
- Three pole wigglers
- Large gap IR dipoles
- Elliptically polarizing undulators

Ultra-low emittance

- ε_x, ε_y = 0.6, 0.008 nm-rad
 Diffraction limited in vertical at 12 keV
- Small beam size: $\sigma_v = 2.6 \ \mu m$, $\sigma_x = 28 \ \mu m$, $\sigma'_v = 3.2 \ \mu rad$, $\sigma'_x = 19 \ \mu rad$

Storage Ring

Table 1: The NSLS-II storage ring parameters		$v_{\chi} = 33.360 \xi_{\chi} = -101.5$	α ₁ = 3.626E-04 ε _x = 2.017nm
Energy	3 GeV	$35 \frac{v}{v} = 16.280 \xi = -41.3$	
Circumference	791.96 m	β	B
Harmonic Number	1320	30	Γ <u>γ</u>
Bending Radius	25.019 m		\cap
Dipole Energy Loss Uo	286.5 keV		
Emittance Bare Lattice ε _o : Hor/Ver	2.05/0.01 nm-rad	25	
Emittance for 8-DWs Enat Hor./Ver	0.51 /0.008 nm-rad	E	
Momentum Compaction	0.000368	* 20	
RMS Energy Spread: Bare Lattice	0.051%	F T	
Energy Spread with 8-DWs	0.099 %	2	V V III
Tunes (Q _x , Q _y)	(32.42,15.15)	<u>_</u> 15	
Chromaticity (ξx, ξy)	(-99, -33)	x,	A 10*n A
Peak Dispersion	0.489 m	10	
β Function at 8.6m ID (β _x , β _y)	18/3.8 m		
β Function at 6.6m ID (β_x , β_y)	1.9/2.1 m		
Alignment Tolerance	(0.1, 0.1 mm,	5	
Girder & Dipole (x, y, Φ)	0.5mrad.)		
Alignment Tolerance.	(0.03, 0.03 mm,	0	
Quad. & Sext(x, y, Φ)	0.2 mrad.)	0 5 10	15 20 25
		Long ID	Short ID

S.Ozaki, J.Bengtsson, S.L. Kramer, S.Krinsky, V.N. Litvinenko. PAC 07

Injection Systems

Booster:

Injection Energy	0.2 GeV
Extraction Energy	3.0 GeV
Circumference	154 m
Emittance	30 nm-rad
Cycle Frequency	1Hz
RF frequency	500 MHz
Charge	10-15nc @ 30 mA
Tunes: x, y	10.25, 4.2

Close to NSLS-II requirements:

Linac:

Energy	0.2 GeV	ASP (ACCEL):
Frequency	S-Band	3 GHz, 100 MeV, 4/0.25 nC/pulse
Charge	15 nC/pulse	SOLEIL (THALES):
ΔΕ/Ε	< 1%	3 GHz, 100 MeV, 10/0.5 nC/pulse

Scope of the Control System

The control system integrates all subsystems:

- Power supply
- RF
- Timing
- Vacuum
- Diagnostics
- Insertion devices
- Beam lines
- Facility
- Equipment protection and personal safety

Control System Requirements – 1 of 2

- Bunch Length 1-40 psecs
- 2.6 usec ring revolution
- Top off every 1 minute
- Top off bunch train 140-300 nsec
- Top off damping time 10-50 msecs (no extraction)
- Manual control of orbit trims, quadrupoles, sextupoles, and insertion devices are asynchronous
- ~10 Hz write/read is suitable for "turning knobs" for a power supply
- 5 Hz updates to operators of up to 1000 chosen parameters
- Archive up to 6000 parameters at a rate of 2 Hz continually
- Must scale to support 150,000 physical I/O connections and 400,000 computed variables
- 99.99% availability 24/7

Control System Requirements – 2 of 2

Transient Recording

- Take coherent turn by turn orbit data for up to 800 channels 1024 turns
- Latch the last 10 seconds of data from all parameters in the storage ring
- Beam line needs 1 msec archiving over 1 minute for temperatures and positions
- Provide data for all control aspects
- 5 KHz RF Feedback on beam phase
- 10 kHz orbit feedback, (100 usec loop time)
 - 300 BPMs (10 per cell)
 - 2 * 120 Corrector PS in 30 I/O Controllers (IOC)
- 20 msec equipment protection mitigation
- 1 Hz model based control
- 10 kHz power supply read backs triggered from timing system

Open-Source Control System Standards

EPICS (Experimental Physics and Industrial Control System) Collaboration:

- Began in 1989 between LANL/GTA & ANL/APS (B. Dalesio & M. Kraimer)
- Over 100 independent projects in North America, Europe and Asia
- Applications in particle physics, astronomy, and industrial control
- Independent development, co-development and incremental development by the numerous distributed groups of developers
- Large biannual collaboration meetings to report new work, discuss future directions, explore new applications, and explore new requirements for existing codes

RTEMS (Real-Time Executive for Multiprocessor Systems) Operating System:

Free open-source code for OS, support components, tests, documentation, development environment

- Standard compliant
- Highly portable across CPU architectures, many Board Support Packages (BSP) available
- Several successful accelerator control projects: LCLS, Spear, CLS, …

Control System Infrastructure

Vacuum, PPS, MPS, Non FOFB RS, Cryo., Facility control

Areas For Technical Development

- Embedded Controllers need an open standard for high speed, deterministic functions. Work with other labs and board manufacturers to develop one.
- Relational Databases support data management through the life of a project. Development of adequate tools to enter and report this data is required early.
- High Level Applications currently tie together functions through data or file structures. To make the components of High Level Applications modular and distributed, a client/server architecture is needed.

Embedded Device Control – 1 of 2

Embedded Device Control – 2 of 2

• FY 08

- Purchase order in place with LBL (Alex Ratti and Larry Doolittle)
- Develop a prototype cell controller:
 - Redundant 2 Gbit communication paths for peer to peer communication
 - RF timing signals
 - Verify communication and timing jitter meet requirements
- Develop the interface from the cell controller to a processor for integration into EPICS (PCI Express)
- FY 09
 - Develop the inexpensive device controller with redundant 100 MBit controllers
 - Develop the 100 Mbit receive and transmit circuits for the Cell Controllers
 - Begin integration of these device controllers
 - Libera
 - Power supply control
 - LLRF control

IRMIS – 1 of 4

IRMIS: Integrated Relational Model of Installed Systems

The IRMIS RDB effort began at the APS. After several iterations and meetings with other laboratories, the emphasis shifted to a global perspective in developing the schema and support applications.

IRMIS is a collaborative effort involving SNS, Triumf, SLAC, CLS, SLS, ...

- IRMIS Inaugural Meeting, APS, March 2005
- IRMIS Collaboration Meeting, APS, May 2006 www.aps.anl.gov/epics/irmis
- IRMIS meetings are usually held in collaboration with EPICS meetings.

The present BNL work extends this collaborative effort.

IRMIS – 4 of 4

Virtual IOC – 1 of 2

\blacktriangleright Tracy simulation engine

Version Tra	Track	Repetition	Lattice(30 Cells) (Idea, no error)	Support function		
	Hack	Repetition		Set	read	
3.5	linear	0.5Hz	CD3-Jun20	Magnets, & RF	Magnets, RF, & BPM	

Virtual IOC – 2 of 2

Closed Orbit from VIOC:

Russian PAC, 28.09 – 03.10, 2008

High Level Application Environment – 1 of 3

Rationale: Open environment based on the **standard publish/subscribe specification** addressing the different types of the accelerator high level architectures and applications

Standard Publish/Subscribe Specifications

Middleware	Language	Data Type	Data Content Filtering	QoS	Complexity	Year
CORBA Event Service	C++, Java,	Generic and typed events	no	no	hard	1997
CORBA Notification Service	C++, Java,	Structured events	yes	yes	hard	~2000
Java Messaging Service (JMS)	Java	five types: text, map, bytes, stream, object messages	filters are message properties	no	easy	~2000
High Level Application (HLA)	C++, Java,	Sequence of octets	no	yes	TBD	~2000
Data Distribution Service (DDS)	C++, Java,	User-specific data types	yes	yes	easy	2004

High Level Application Environment – 3 of 3

- DDS/DCPS specification addresses the different types of the high level accelerator architectures and applications
- Functionality of two major DDS products has been evaluated:
 - OpenSplice offers an immediate commercial solution
 - openDDS is a free open source software that implements core DDS services. But it has to be extended with the content filtered topic and Java support
- In one year we plan to build the alpha/beta version of the DDS-based accelerator high level architecture and deploy the composite full-scale application providing the comparison of design and operational optics extracted from turn-by-turn data of a virtual accelerator.

Concluding Remarks

- 50% of Control System Design is completed
- Hardware standardization is being aggressively pursued with PLCs, processors, and crates being evaluated.
- All areas of development are making good progress.
- All subsystems should be prototyped in FY09, early FY10 time frame.