DEVELOPMENT, PRODUCTION AND TESTS OF PROTOTYPE SUPERCONDUCTING CAVITIES FOR THE HIGH BETA SECTION OF THE ISAC-II HEAVY ION ACCELERATOR AT TRIUMF

V. Zvyagintsev, R.E. Laxdal, R. Dawson, K. Fong, A. Grasselino, P. Harmer, M. Marchetto, A.K. Mitra, T. Ries, B. Waraich, Q. Zheng, TRIUMF, Vancouver, Canada;

R. Edinger, PAVAC Industries, Richmond, Canada

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Abstract

The medium beta section of the ISAC-II heavy ion superconducting linear accelerator, consisting of 20 cavities, has been in operation at TRIUMF since 2006. The high beta section of the accelerator, consisting of an additional twenty cavities, is currently under development and is scheduled for completion in 2009. The cavity is a superconducting bulk Niobium two-gap quarter-wave resonator for frequency 141 MHz, optimum $\beta_0=0.11$, providing, as a design goal, a voltage gain of Va=1.08 MV at 7 W power dissipation. The inner conductor is equipped with a donut drift tube. The cavity has a double wall mechanical structure with liquid Helium inside. Two prototype cavities for the ISAC-II high beta section were developed at TRIUMF and produced by a Canadian company, PAVAC Industries of Richmond, B.C. The prototypes are equipped with a mechanical dissipator to damp detuning environmental mechanical vibrations. An inductive coupler, developed at TRIUMF, provides low power dissipations to the liquid helium system. Superconducting RF tests of both cavity prototypes show that we have achieved the required frequency and exceeded the design goal parameters. Response of the cavity to liquid helium pressure fluctuations, Lorenz force detuning and microphonic sensitivity with and without the damper was tested. RF design, prototype production details and cavity test results will be presented and discussed.

Acceleration Gradient Definition

Ea=Va/D

Medium Beta ISAC-II Cavities

in operation since April 2006 and is reliable at an average acceleration gradient of 7 MV/m (1.26MV) at 7 W power dissipation Ep= 35 MV/m and Bp=70 mT

The medium beta design was accepted as a basis for the design of the high beta section.

Cavity Design

Cavity double wall structure

1/10/2008

CST Model and Cavity Parameters

	f	MHz	141.44	•
	aperture	mm	20	
	gap	mm	35	
	drift	mm	80	
	Outer dia	mm	180	
	Inner dia	mm	60	
	Height	mm	560	
	bo		0.112	
	TTFo		0.936	
	U/Ea^2	J/(MV/m)^2	0.067	
	RsQo	Ohm	26	
	Ep/Ea		4.9	
	Bp/Ea	mT/(MV/m)	10	
	Bc/Ea	mT/(MV/m)	0.1	
	Df/Dx	kHz/mm		
	beam ports		120	
	top		-268	
- C. A	bottom		10	

To avoid errors from mesh Ep and Bp Calculations

31945

27952

24757

21563

18368

 $H_p =$

Ep is defined from geometry parameterization of the donut surface Assuming cosine longitudinal, hyperbolic radial magnetic field distribution and value of magnetic field stored in this volume we can calculate Bp.

 $H(z,r) = Hp \frac{r_1}{r} \cos\left(\frac{2\pi z}{\lambda}\right)$

 $U_{M} = \frac{\mu_{o}}{2} \int \int H^{2}(z,r) dz d\pi r^{2}$

 $\sqrt{\frac{U_M}{\mu_o \pi r_1^2 \int \int cos^2 \left(\frac{2\pi z}{\lambda}\right) \frac{dz dr}{r}}}$

For Cavity Beam Dynamics

Steering compensation: 6MV/m,-30deg,A/q=3

Copper Dummy Cavity

Before and after welds

Two copper dummy cavities were produced there for production preparation and training purposes for PAVAC Industries.

```
1/10/2008
```

300-4K frequency shift

To define the cavity production it is necessary to foreseen frequency shift of cavity resonance frequency from room to helium temperature.

Let's consider experience with similar cavities.

ALPI cavities	ISAC-II medium beta cavities	
f=80 MHz	f=106 MHz	106/80~1.3
156 kHz frequency shift	190 kHz frequency shift	190/156~1.2

We can see that frequency shift is roughly proportional to operational frequency

Frequency shift for high beta cavity=190*141/106=253 kHz

Goal cavity frequency at room temperature= =141.440-0.253=141.187 MHz

Actual measured frequency shift is 4.5% more and is of 264 kHz

1/10/2008

Fabrication and testing frequency summary for ISAC-II high beta QWR prototype

Frequency, MHz	Resonant frequency			
	old goal	Cav#3	Cav#4	goal
Parts Machining	137.19	137.574	137.648	137.611
Cuts	141.141	141.188	141.115	
Flanges weld		141.298	141.222	
Beam ports adjustment	141.195	141.195	141.203	
Beam ports weld		141.169	141.187	
Jacket weld	141.174	141.148	141.168	
BCP	141.19	141.196	141.192	
4K	141.44	141.467	141.456	
3mm bottom flange cut		141.173	141.18	
BCP		141.16	141.156	
4K	141.44	141.423	141.42	

	Resonant freq. shifts		
	old goal	Cav#3	Cav#4
Cuts compensation	3.951	3.614	3.467
Flange weld shift		0.11	0.107
Beam ports weld shift		-0.026	-0.016
Jacket weld shift		-0.021	-0.019
BCP shift	0.016	0.048	0.024
300-4K shift	0.25	0.271	0.264
3mm cut shift		-0.023	-0.012
BCP shift		-0.013	-0.024
300-4K freq.shift		0.263	0.264

the transformation of the transformation of

Gap adjustment before beam ports welding

Cuts

Etching before weld

1/10/2008

Etching Cavity 4

BCP 1:1:2 HF,HNO3,H3PO4 •etching of Cavity 4

- •Degrease cavities as per pre-weld etch
- •Start with acid at 9gm/ltr
- •Cavity and acid pre-chilled

•Attach teflon extension tube, place in fume hood and pump acid into cavity

- •Pump chilled water into cavity jacket and center conductor during etch
- •Acid thermalized at ~6.5C
- •Recirculate acid (from bottom to top) for 1 minute every 5 minutes
- •Fill cavity with DI water and flush then fill
- •Etched for 100 minutes at an average etch rate of 0.72micron/minute
- •Cavity weight changed by 120gm

1500 LBS. MAX.

Typical treatment involves 30-40 minute high pressure water rinse and twenty four hour air dry in a clean room, followed by vacuum pumping and bake out at 95C for 48 hours.

1/10/2008

SC Tests

Single cavity cryostat and superconducting test area

Cavity	#	3	4
fo	MHz	141.423	141.456
Qo		1.10E+09	1.20E+09
Ea@7W	MV/m	8.1	8.8
EaMax	MV/m	10.9	12.5
Df/Dp	Hz/Torr	-3.3	-1.7
Df/DEa^2	Hz/(MV/m)^2	-0.8	-0.9
Df300-4K	kHz	263	265

Ea, MV/m

Prototype Test Results

At 7W Ea~8.5 MV/m, Va~1.5 MV (design goal 6MV/m and 1.08 MV)

Cavity#4 RF Conditioning

Q-curves measured after cavity RF conditioning cycles. RF pulsing (0.5s/1s) of overcoupled cavity with Pf~200-400W. For better efficiency we put ~10⁻⁵ Torr of He in the cavity volume.

Cavity#4 after stay in the range of temperature 50-100K got Q-disease 10 times Q-drop, very much helium boiling at high fields Q-curve shape changed – knee to concave

1/10/2008

Tuner Motor and Accelerometer Setup for Vibration Test

Tuner Motor

Accelerometer

Mechanical Dissipator Performance

Cavity lowest mechanical resonance ~110 Hz which is from inner conductor

Frequency deviation with dissipator is ~6 times less than without With dissipator we could use less overcoupling, then ~6 times less Pf

1/10/2008

RUPAC 2008 V. Zvyagintsev TRIUMF

Solid State and Tube Amplifier

Solid State Amplifier designed for High Beta ISAC-II Cavities at QEI during the test shown very good performance and twice less noise level in RF System of the cavity in comparison with tube amplifier

1/10/2008

Tuner Range and Velocity

New Tuner

Static Test:

Range ~18.5 kHz, Velocity 76 Hz/s, Resolution 0.04 Hz/step **Dynamic tests:** •He pressure variations Ea= 6.4MV/m,Pf=166W, Df~40 Hz Pressure variation 137 T ->Dfo~330 Hz Velocity ~5.5T/s=13Hz/s •Reference signal variations 1 Hz FM up to 10Hz deviation

1/10/2008

New Coupler Design

Heat sink for liquid nitrogen flux Shapal RF window is thermal drain for inner conductor

Trolley plate with crossroller bearings provides smooth movement and holds load from rf cable and bellows with nitrogen

1/10/2008

CONCLUSIONS

Two superconducting bulk niobium ISAC-II high beta prototype cavities have been developed, produced and successfully tested. The acceleration gradient at nominal power dissipation 7W is more than 8 MV/m. The fabrication of twenty cavities are underway with the first six expected in October 2008.

$$t := \frac{-1.4}{1000} \qquad \text{m-shift of the beam relatively aperture center}$$

$$Ey := \frac{Ey2 - Ey1}{0.002} \cdot t + Ey2 - 0.001 \cdot \frac{Ey2 - Ey1}{0.002} \qquad \text{linearly interpolated field values along shifted beam}$$

$$Bx := \frac{Bx2 - Bx1}{0.002} \cdot t + Bx2 - 0.001 \cdot \frac{Bx2 - Bx1}{0.002}$$
Scaling of the fields for Ea=6 MV/m
$$Ez := \text{sc-Ez} \qquad Ey, := \text{sc-Ey} \qquad Bx := \text{sc-Bx} \qquad Ext := \text{sc-Ex1} \qquad Ex2 := \text{sc-Ex2}$$

$$Ey0 := \text{sc-Ey0} \qquad Bx0 := \text{sc-Bx0}$$
Calculation of the variation of the transverse momentum at Ea=6MV/m
$$\Delta \theta e(\beta) := \frac{q}{A} \cdot \frac{\sqrt{1 - \beta^2}}{mo} \cdot \frac{\sum_{n=0}^{N} \left(Ey_n \cdot \sin\left(\frac{2 \cdot \pi \cdot f \cdot z_n}{\beta \cdot c} + \phi s + \pi\right) \right)}{\beta^2} \cdot \frac{\text{Length}}{N} \cdot 10^3 \qquad \text{mrad - electric component}$$

$$\Delta \theta m(\beta) := \frac{q}{A} \cdot \frac{\sqrt{1 - \beta^2}}{mo} \cdot \frac{\sum_{n=0}^{N} \left[\beta \cdot c \cdot Bx_n \cdot \cos\left[\left(\left(\frac{2 \cdot \pi \cdot f \cdot z_n}{\beta \cdot c} + \phi s + \pi\right)\right)\right)\right]}{\beta^2} \cdot \frac{\text{Length}}{N} \cdot 10^3 \qquad \text{mrad - magnetic component}$$

$$\Delta \theta s(\beta) := \Delta \theta e(\beta) + \Delta \theta m(\beta) \qquad \text{mrad - trajectory angle at resonator output}$$

1/10/2008