

## A NEW INJECTION SYSTEM FOR KURCHATOV SOURCE OF SR

A.Anoshin, E.Fomin, V.Korchuganov, Yu.Krylov, V.Kvardakov, S.Pesterev, S.Tomin, V.Ushkov

RRC Kurchatov Institute, Moscow, Russia

# Content

- Full energy Booster Synchrotron lattice
- Magnetic elements
- Preinjector modernization
- Injection Extraction
- Conclusion

#### **Accelerator complex layout**



#### Accelerator complex after upgrade



#### **Transversal cross-section of shielding tunnel** with **SIBERIA-2** storage ring and Booster



### **One superperiod of the booster**



### **Optical functions of the booster**





### **Tune diagram and working point**



### Main booster parameters

| Beam energy, MeV                               | 80 MeV                             | 2500 MeV         |  |
|------------------------------------------------|------------------------------------|------------------|--|
| Electron current, mA                           | 10 mA                              |                  |  |
| Circumference                                  | 110.89 m                           |                  |  |
| Repetition rate                                | 1 Hz                               |                  |  |
| Number of superperiods                         | 12                                 |                  |  |
| Betatron tunes Q <sub>x</sub> / Q <sub>y</sub> | 6.83 / 4.57                        |                  |  |
| Revolution frequency                           | 2.70 MHz                           |                  |  |
| RF harmonics                                   | 67                                 |                  |  |
| RF frequency                                   | 181.13 MHz                         |                  |  |
| Momentum compaction                            | 0.011                              |                  |  |
| Chromaticities ξ <sub>x</sub> /ξ <sub>y</sub>  | - 13.3 / - 8.8                     |                  |  |
| Damping times: $\tau_x$ , $\tau_y$ , $\tau_s$  | 94.4, 90.8, 44.6 s                 | 3.1, 3.0, 1.5 ms |  |
| Energy spread                                  | ± <b>3.5 %</b>                     | 0.09 %           |  |
| Energy loss per turn                           | 0.65 eV                            | 622 keV          |  |
| Natural emittance                              | < 10 <sup>-5</sup> m-rad 51 nm-rad |                  |  |

#### **Errors used in COD simulation**

| Error type                                          | σ                |
|-----------------------------------------------------|------------------|
| Magnet displacement: $\Delta x, \Delta y, \Delta s$ | 0.2, 0.2, 0.2 mm |
| Magnet rotation angle                               | 0.2 mrad         |
| Dipole field error $\Delta B/B$                     | 2×10-4           |

#### **Orbit distortions and corrector strength (1000 sets)**

|                           | <x></x> | $\sigma_x$ | <y></y> | $\sigma_{y}$ |
|---------------------------|---------|------------|---------|--------------|
| Max. random COD, mm       | 12.6    | 5.8        | 6.6     | 1.9          |
| Max. corrected COD, mm    | 0.38    | 0.06       | 0.09    | 0.01         |
| Correctors strength, mrad | 0.54    | 0.1        | 0.41    | 0.07         |

**Electron beam size during injection into the synchrotron**  $\Delta E/E = 0.07 \text{ (from linac)}, \ \eta_{\text{booster}} = 0.6 \text{ m} =>\Delta X_{\text{ini}} = 46 \text{ mm}$ 

We have adopted for the aperture in all elements of the booster:  $Ax = \pm 25 \text{ mm}, Ay = \pm 10 \text{ mm}$ 

#### **Dynamic aperture**



## **Magnetic elements**

All booster magnets will be made laminated and glued. The lamination sheet thickness is 1 mm. Dipole bending magnets are H-type with parallel edges. All dipoles are connected in series.







### Main parameters of the dipole

| Number of magnets                                                           | unit | 27                       |
|-----------------------------------------------------------------------------|------|--------------------------|
| Yoke mass                                                                   | kg   | ~ 1000                   |
| Bending angle                                                               |      | 15°                      |
| Bending radius                                                              | m    | 5.55                     |
| Maximum field                                                               | Т    | 1.5                      |
| Gap                                                                         | mm   | 24                       |
| Integral inhomogeneity $\int \Delta B / \int B$ (in 50×20 mm <sup>2</sup> ) |      | $\pm 2.5 \times 10^{-4}$ |
| Terns per coil                                                              |      | 8                        |
| Maximum current                                                             | kA   | 1.82                     |
| Maximum power                                                               | kW   | 19.5                     |
| Mean power                                                                  | kW   | 7.3                      |
| Max./min. voltage on all 27 magnets                                         | V    | 547/-254                 |

#### **Quadrupole magnets**, 3 families



### Main quadrupole parameters

| Lens family                                              | unit | QF1  | QD     | QF2  |
|----------------------------------------------------------|------|------|--------|------|
| Number of magnets                                        |      | 24   | 24     | 12   |
| Bore diameter                                            | mm   | 50   |        |      |
| Yoke mass                                                | kg   | 40   |        |      |
| Terns per coil                                           |      | 18   |        |      |
| Maximum gradient                                         | T/m  | 22.5 | 26.4   | 24.6 |
| Maximum current                                          | A    | 313  | 370    | 345  |
| Maximum power                                            | kW   | 2.5  | 3.47   | 3    |
| Mean power                                               | kW   | 0.94 | 1.32   | 1.14 |
| Maximum voltage on all magnets                           | V    | 235  | 278    | 131  |
| Gradient inhomogeneity $\Delta G/G$ inside bore diameter |      |      | 5.10-4 |      |

#### **Sextupole magnets**, 2 families



### Main sextupole parameters

| Magnet type                                | unit             | SD     | SF     |
|--------------------------------------------|------------------|--------|--------|
| Yoke mass                                  | kg               | 14     |        |
| Number of magnets                          |                  | 24     | 24     |
| Bore diameter                              | mm               | 60     | 60     |
| Terns per coil                             |                  | 86     |        |
| Maximum current                            | А                | 11.2   | 4.2    |
| Maximum strength                           | T/m <sup>2</sup> | 270    | -100   |
| Maximum power                              | W                | 58     | 8      |
| Mean power                                 | W                | 22     | 3      |
| Sextupole field inhomogeneity $\Delta B/B$ |                  | 5.10-4 | 5.10-4 |

### **Preinjector modernization**

Modernization project provides for a possibility to increase injection energy from linac to BS from 80 MeV to 160 MeV by electron bunches transition twice through linac structure



### **Magnetic mirror optical functions**



 $\Delta L(\Delta E) = 0, \eta = 0$ 



$$B_0 = 1 \text{ T/m}$$









## Scheme of injection in the Booster





#### Scheme of extraction from the Booster



m



#### Scheme of injection into Siberia-2



18 nm·rad mode

### Conclusions

#### 1) Reliability of Siberia-2 work at 2.5 GeV.

- a) The increase of radiation decrements in 170 times results in the strongest suppression collective instabilities especially during an injection;
- b) The magnetic and RF systems are not changed, because the energy is fixed (stable betatron and synchrotron tunes in a time as a result).
- 2) An optimality of injection, an opportunity of accumulation at small apertures. The booster electron beam has small phase volumes, so there is an opportunity of accumulation in Siberia-2 at work with small DA (in small emittances structures).

#### 3) Improvement of consumer parameters of SR beams.

- a) A stability of photon beams (temperature stability of the magnetic elements and an environment);
- b) A periodical injection for reaching an "infinite" life time, the experiments at constant intensity of SR;

# Thank you for attention