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Synchrotron radiation properties:
spectral and angular distribution

Radiation power, erg/sec A mrad, per electron Radiation power, erg/sec A, per electron
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Siberia-2 and Siberia-1 (RNC “Kurchatov Institute”)
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VUV station at Siberia-1 storage
ring (1998)
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Unique spectral features and time structure of synchrotron radiation allows
one to use this kind of excitation in investigation of electronic relaxation
processes in insulators with wide band gap. The knowledge of these
processes is important for understanding of scintillation efficiency in
crystals. Luminescence excitation technique is convenient for study of
etnergtjy transfer in these systems and for investigation of crystal energy
structure.

In general, luminescence excitation spectra can be subdivided into several
spectral regions:

Direct excitation of lowest defect excited state

Tonization of defects by photons with energy below the matrix
forbidden gap

Excitation of matrix Urbach tail
Excitation of excitons
Production of separated low-energy electron-hole pairs

Production of high-ener'gc}/ electron-hole pairs followed by impact
excitation/ionization of defects

Each of these regions is characterized by different role of relaxation
channels. Possible channels of energy transfer and relaxation are
discussed in the presentation.



Absorption coefficient in wide photon energy range and different
processes studied using synchrotron radiation excitation of
luminescence
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Dynamics of electronic relaxation in wide bandgap solids
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Energy relaxation processes which can are studied
using synchrotron radiation

Excitation range

Types of electronic excitations

Relaxation processes
Visible hv <E Excited and ionized states of Scintillator and phosphor emission. Energy transfer
Uv hy = 3:109 Y defects and impurities. Self- between centers. Defect creation after exciton
o trapped excitons annihilation. Intrincic defect quenching.
. : Electron-phonon interaction resulting in
Electron-hole pairs with energies thermalization and migration quenching (separation
E,<hv<(2+3)E below the threshold of secondary J g g (5ep
VUV 9= " 9 I . of electron-holee pair components). Diffusion of
hv =5+20 eV excitation creation. Free - . - o
: excitations. Trapping of excitations. Specific types
excitons. : )
of core hole relaxation (core-valence luminescence).
Hot excitations with energy
(2+3)E;<hv < higher than the threshold of Electron-electron inelastic scattering and Auger
(5+10)E, , secondary excitation creation. processes resulting in multiplication of electronic
hv = 15+100 eV Excitation of outermost core excitations.
XUV bands.
SO; X Core excitations.

hv > (5+10)E, ,
hv > 50 eV

X-ray fluorescence. Auger processes.

Excited region which contains a
hundreds of excitations. Tracks
of ionizing particles.

Interaction of large number of electronic excitations.




An example of excitation
spectrum in which all of
mentioned above effects are
observed



Light yield (STE), a.u.

Excitation spectra for two emission bands in BaF,: self-trapped exciton
emission (solid) and core-valence transitions (points)
[A.Belsky et al., LURE (France) + ELETRA (ltaly)]
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Light yield (STE), a.u.

Excitation spectra for two emission bands in BaF,: self-
trapped exciton emission (solid) and core-valence
transitions (points)

Different energies of excitation thresholds
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Light yield (STE), a.u.

Excitation spectra for two emission bands in BaF,: self-
trapped exciton emission (solid) and core-valence
transitions (points)

Surface losses (pecularities due to radiation penetration

depth)

0,20 o |3

_ 1-R(hw)
Uexp(ha))—l_i_a(ha))\/a Uvol(ha))

g

|E:
0,15 g
5 STE

0,05 -
y CVL

0,00 —




Excitation spectra for two emission bands in BaF,: self-
trapped exciton emission (solid) and core-valence
transitions (points)

Local density effects
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Acceleration of decay
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in the region of creation of

several excitations after
Auger decay
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Fig, 4. CL kinetic measurements in the energy range 20 to 120 \V L
eV including 4dBa resonance absorption band: 1 - 30eV. 2 - 96 ~
eV,3-160eV, 4-120eV,




Excitation spectra for two emission bands in BaF,: self-
trapped exciton emission (solid) and core-valence
transitions (points)

Yield non-proportionality

The well-known problem in
scintillators: the yield is not -
proportional tfo the energy
of the ionizing photon
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Excitation spectra for two emission bands in BaF,: self-
trapped exciton emission (solid) and core-valence
transitions (points)
Relaxation of core holes

Different relaxation
channels after excitation of || —
different core levels
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» Tonization of defects by photons with energy below
the matrix forbidden gap

> Excitation of matrix Urbach tail
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intensity (a.u.) intensity (a.u.)

intensity (a.u.)

Yb3* charge transfer luminescence (CTL) excitation (Guerassimova et al)

Urbach tail region
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> Excitation of matrix Urbach +tail
> Excitation of excitons

» Production of separated low-energy electron-hole
pairs

(£ Urbach
absorption

F Exciton ]

N

|
'ﬁQLU ERE Echg

Electron-hole
pair




Urbach tail effect in PbWO, excitation “ \
spectra Wi -

Quantum Yield, a.u.

Quantum Yield, a.u.
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PWO excitation spectra for blue (top) and green (bottom) emission bands



» Production of separated low-energy electron-hole
pairs
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Probability of or separation
of the components of an electron-hole pair vs their

energy
The nature of this curve is the increase of

electron-hole separation with pair energy
and the decrease of direct recombination

with this separation:
Coupled electron Separated electron and hole 1 .
Long-decay emission . T<Rp
and hole g y Probability of recombination = Ro PR

Short-decay
emission
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RT/LHeT ratio

The effect of electron kinetic energy on the efficiency of

energy transfer to the luminescence center as a function of

Quantum vyield, a.u.
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temperature (Spassky et al)
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Excitation spectrum
temperature dependence is
described in previous slide



» Production of high-energy electron-hole pairs
followed by impact excitation/ionization of defects
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MgO:Al - threshold of multiplication of electronic
excitations (ch. Lushchik, Mikhailin et al)
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Two types of recombination channels:
excitonic one (upper part) and recombination on a centre
(lower part).
Figures on the right display typical energy dependence of ‘ L

the quantum yield of these channels - .
STE
A~ "

2k hv
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Luminescence excitation spectra of intrinsic
luminescence of

CaWO, (upper panel) [S. I. Golovkova, A. M.
Gurvich, A. |. Kravchenko, V. V. Mikhailin, A. N.
Vasil'ev, Phys. Stat. Sol. (a), 77 (1983) 375] and

CeF; [C. Pedrini, A. N. Belsky, A. N. Vasil'ev, D.
Bouttet, C. Dujardin, B. Moine, P. Martin, M. J. Weber,
Material Research Society Symposium Proceedings, V.
348, pp. 225-234, 1994] (lower panel) and

activator luminescence of

CaSO,:Sm [I. A. Kamenskikh, V. V. Mikhailin, I.

/ N. Shpinkov and A. N. Vasil'ev, Nucl. Instr. and Meth.,

A282 (1989) 599] (middle panel)



> More complicated case: an example of
crossluminescence quenching at 4d Ba?* core level
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5p core hole interaction with excitons and conduction electrons in

BaF, (Belsky et al)

Decay is fastest and yield is quenched in the
region of 4d Ba2+ absorption region due to
interaction of several excitations
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Reflectivity, a.u.

Reflectivity, LHeT
—&— CaMoO,

20 25 30 35

Photon energy, eV

Manifestation of core
excitons in in optical
functions in VUV reguion

Intensity of core exciton peaks correlates with
the nature of the bottom of the conduction band
(Kolobanov, Spassky et al).

Cation core excitons are visible only if the
lowest states of conduction band are formed
from cation states (Pb and Ba molibdates).

Reflectivity shows no structure in core exciton
region if the lowest states are formed from
complex anion states (Sr and Ca molibdates).

CondB (MoO,? antibond states)

—

VB (MoO,? bond states)

Pb2* Ba?* Sr2+ Ca?t



» An example of study of energy transfer in wide range
in a crystal with complicated electronic structure
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Interaction of cerium excitons in CeF; (energy transfer)
The elementary region of high local density of €XCI'|'C('|'IOHS

An example of study of luminescence excitation spectra in

(Belsky et al)

wide region of processes

Luminescence intensity (a.u.)
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At high energy excitation luminescence
decay of CeF; is non exponential and show a
strong acceleration

Energy threshold of decay acceleration in
CeF;is at 16 eV
Above 16 eV inelastic scattering of the
primary photoelectron can create two
excited ions (Ce’")” in close vicinity.
The result of their interaction can be written
as
(Ce*)" + (Ce¥)" — Ce*t + e+ Cet
From simulation of interaction the
acceleration of decay is from picosecond
range



The reasons of light yield instability
induced by radiation

Creation of the reversible damage:

a) transient defects - close F-H pairs

b) Change of electronic state of deep defect levels
In the forbidden energy gap

Creation of the Irreversible damage:
a) stable F-H pairs
b) defect conglomerates



Benefits of VUV and X-ray SR in radiation
damage study :

~
2~

VUV (especially XUV) and X-ray photons produce "™

the same spectrum of elementary electronic 1o /

excitations (electron-hole pairs, excitons, core level " [ [=

excitations, initial defect formation stages) as high- o 3

energy ionizing particle 10°

Absorption coefficient in XUV and X-ray region is 10°

extremely high (10% to 10° cm™), therefore ol L L1l 1 \102
accumulated dose in the thin absorption layer becomes - nm
huge SR spectral distribution for

_ _ _ various electron energy
Unique spectral features and time structure, and high ~ (R=32m)

Intensity of synchrotron radiation allow one to use this
Kind of excitation in investigation of defects and their
creation in insulators with wide band gap.



How to study radiation effects using
luminescence spectroscopy

e Changes of luminescence emission spectra (additional
emission bands)

e Changes of decay kinetics (radiation defects can
result in sharpening of initial stages of decay and
Increasing of slow component)

e Changes of energy transfer (radiation defects can
change ratio of several relaxation channels)



Usage of SR in X-ray region in the study of
PWO radiation hardness

*VEPP-3 (Budker INP): Flux of 10'% ph/s with
energy from 2 to 100 KeV (“white” X-rays)

*DCI (Lure, Orsay): Flux of 1072 ph/s of
monochromatized 15 KeV X-ray photons



LUMINESCENCE INTENSITY, arb.un.

Dose dependence for different regions of
PWO emission spectrum excited by X-ray SR

Dose rate is about 1 kGy/sec (in thin
absorption layer, d~10- cm)

Degradation / enhancing of emission under
irradiation depends on the emission spectral
region

Fast and slow recovering of radiation defects
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(a) Green emission (480 nm)
— fast degradation at first
10 sec followed by much
slower degradation

(b) Blue emission (380 nm)
IS more stable under
irradiation

(c) Few cases of increase of
emission in intermediate
range (430 nm) under
irradiation — the evidence
of new emission center
production



PWO emission spectrum explanation

*Fast (blue) component — excitonic (Pb)
emission, (should be linear with excitation
intensity)

*Slow (green) component — defect
recombination emission, (should be non-linear
(quadratic?) with excitation intensity)



L.uminescence intensity, arb.un.
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How to measure nonlinear excitation efficiency?
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Modulation of SR spectrum by
the grating spectral efficiency
with sharp peculiarities allows
one to estimate the order of the
process

T—— Sharp structure due to Pt

covering of the grating
dissapiars in

1st order fast PWO emission
and

2" order slow PWO emission



Conclusions

Fundamental mechanisms of electronic relaxation
in large bandgap solids and energy transfer can be
studied by analysis of luminescence excitation
spectra and kinetics excited by VUV-X
synchrotron radiation photons, especially using
Time-Resolved Luminescence VUV Spectroscopy.

High flux of SR enables to simulate and investigate
radiation damage effects.
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