Magnetooptic Structure for Synchrotrons with Negative Momentum Compaction Factor

Yu. Senichev

Institute for Nuclear Physics, FZJ, Juelich, Germany Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia

In what cases the structure with such properties is necessary to us?

- To exclude the transition energy crossing
- To have the higher collective instability threshold
- To match in longitudinal plane the different accelerators
- To adjust the different local slip factor for the optimized stochastic cooling
- To avoid the sextupoles in the synchrotron light sources

The requirements to the absolute value of slip factor:

I. For many collective instabilities the threshold is proportional the slip factor

$$\eta = 1/\gamma_{tr}^2 - 1/\gamma^2$$

For instance, from the Landau damping theory the stability requires a minimum spread in incoherent frequencies for longitudinal motion

$$\left(\frac{\delta\omega}{\omega}\right)^2 = \eta^2 \left(\frac{\sigma}{p}\right)^2 \ge \frac{eI_{peak}|\eta|}{2\pi m_0 c^2 \gamma \beta^2} \left|\frac{Z_L(n)}{n}\right|$$

So, the absolute value of slip factor module is desirable to have as large as possible.

II. The transition energy crossing $\gamma = \gamma_{tr} (\eta = 0)$ has to be excluded, since the longitudinal stability disappears.

Yury Senichev

The requirements to the absolute value of slip factor:

III. The longitudinal beam size is determined by the ratio

$$\Delta\phi_{\rm max} = \pm W \sqrt{\frac{2\pi h |\eta| \Omega_{rev}}{e V p_s R \cos\phi_s}}$$

and **the absolute value of slip factor** can be used as additional factor for the matching between two accelerators or/and control of beam sizes during acceleration.

The requirements to the sign of slip factor:

IY. Many investigations devoted to the beam stability declare that the beam is more stable below the transition energy

 $\gamma < \gamma_{w} \quad \Rightarrow \quad \eta < 0$

Besides, in the synchrotron light sources the natural chromaticity accords to the transverse stability criteria for the negative slip factor. So, if the lattice has the imaginary gamma transition

$$\eta = 1/(iG_{tr})^2 - 1/\gamma^2 < 0$$

all requirements can be fulfilled!!!

History of lattice with imaginary gammatransition

- in 1955 Vladimirsky and Tarasov suggested method to get the imaginary γ_{tr} and did it by increasing number of "compensating magnets" with a reversed field but the same gradients, as would be called for in a design with no compensating magnets and where is slightly more than the tune.
- In 1958 Courant and Snyder quantitatively described this idea of the negative momentum compaction factor.
- Later many authors tried to realize this idea of imaginary transition energy in different lattices:
 - -In 1972 Lee Teng suggested the modular method;
 - -In 1974 Bruck developed the regular focusing structure with the "missing" magnet cell in Saturne II;
 - -In 1983 Franczak, Blasche, Reich excited superperiodically the quadrupoles for the SIS-18;
 - -In 1985 Gupta, Botman, Craddock at an initial design stage of the TRIUMF KF used missing magnet;

History of lattice with imaginary gammatransition

- -In 1989 Senichev, Golubeva, Iliev suggested the "resonant" lattice for Moscow Kaon Factory;
- -In 1992 Ng, Trbojevic, Lee applied the modular method of Lee Teng for MB (FNAL);
- -In 1992 U.Wienands, N.Golubeva, A.Iliev, Yu.Senichev, R.Servranckx addopted the "resonant" lattice for Kaon Factory (TRIUMF);
- -In 1993 E. Courant , A. Garen and U. Wienands took the "resonant" lattice for LEB (SSC);
- -In 1995 Y. Senichev wrote the "resonant" lattice theory and applied it for Main Ring (JPARC)
- -In 2000 H. Schönauer, Yu. Senichev et al., The "resonant" lattice for Proton driver for a Neutrino Factory (CERN)
- -In 2007 Y.Senichev et al., The "resonant" lattice for Super-Conducting option of HESR (FAIR)

-In 2008 The "resonant" lattice is one of the candidate for PS2 (CERN)

Regular and Irregular lattices

Momentum Compaction factor (MCF):

$$\alpha = \frac{1}{2\pi} \int_{0}^{C} \frac{D(\vartheta)}{\rho(\vartheta)} d\vartheta$$

where the dispersion $D(\theta)$ is:

$$D'' + K(\mathcal{P})D = \frac{1}{\rho(\mathcal{P})}$$

If in the optics with eigen frequency **v** the curvature $\sigma(\theta)$ is modulated with frequency (1) $\sigma(\theta) = 1/\sigma(\theta) = \frac{Re^{i\theta\theta}}{Re^{i\theta\theta}} + 1/\overline{R}$

$$\sigma(\vartheta) = 1/\rho(\vartheta) \sim \frac{Be^{i\omega\vartheta}}{|H|} + 1/\overline{R}$$

the dispersion solution and Momentum Compaction Factor are:

$$D(\vartheta) \sim Ae^{i\nu\vartheta} + \frac{B}{\nu^2 - \omega^2} e^{i\omega\vartheta} + \overline{D} \qquad \qquad \alpha = \frac{\overline{D}}{\overline{R}} + \frac{\widetilde{D}(\vartheta)}{\overline{R}}$$

28 September-3 October	, RuPAC
2008	

Yury Senichev

Regular lattice

In conventional regular FODO lattice $\omega >> v$.

Therefore the dispersion oscillates with eigen frequency (tune) v: $D(\mathcal{G}) \approx Ae^{i\nu\mathcal{G}} + \overline{D}$

Then Momentum Compaction Factor (MCF) is determined by average values ratio:

$$\alpha = \frac{\langle D(\boldsymbol{\vartheta}) \rangle}{\langle \rho(\boldsymbol{\vartheta}) \rangle} = \frac{\overline{D}}{\overline{R}} \approx \frac{1}{v^2}$$

and the maximum energy of accelerator without the transition energy crossing is determined by $\gamma_{max} \approx v$ or for the $\pi/2$ phase advance FODO lattice $\gamma_{max} \approx Ncell/4$

To make higher γ_{tr} than 50 the total number of FODO cells has to be increased up to 110 per arc

Conclusion:

The only possible solution is the imaginary gamma transition with the wide control of its absolute value

Irregular lattice with curvature modulation (missing magnet lattice)

In case of eigen frequency v is enough close to the curvature oscillation with the superperiodicity frequency $S = v + \delta_r$ the dispersion oscillates with the forced frequency $\omega = S$:

$$D(\vartheta) \sim \frac{B}{v^2 - S^2} e^{i\vartheta S} + \overline{D}$$

In irregular structure MCF depends on the curvature modulation B and detuning $\delta = S - v < < v$:

$$\alpha \approx \frac{1}{v^2} - \frac{B^2}{2\delta v}$$

28 September-3 October, RuPAC 2008

Yury Senichev

Irregular PS2 lattice with curvature modulation ("missing" magnet lattice)

3 regular FODO cells with total length

28/09/07 11.21.08

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

80.

s(m)

70.

(m)

ã

PS2 regular FODO

40.0

36.5

33.0

29.5

26.0

22.5

19.0

15.5

12.0

8.5

5.0

0.0

10.

 $\delta_{E}/p_{0}c = 0.$

Table name = TWISS

20.

30.

40.

50.

60.

β (m)

Win32 version 8.51/15

28 September-3 October, RuPAC 2008

Zero momentum compaction factor in the "missing" magnet lattice

In arc length~620 m MCF<0 at v>0.82 In arc length~600 m MCF<0 at v>0.875 In arc length~580 m MCF<0 is not reached

Conclusion

"Missing magnet" lattices has <u>advantages:</u>

 practically does not perturbs β-functions;

disadvantages:

- requires the large phase advance value,
- significantly increases the arc length.

Yury Senichev

28 September-3 October, RuPAC 2008

Results of "Resonant" lattice theory:

From the article: Yu. Senichev, A "resonant" lattice for a synchrotron with a low or negative compaction factor, KEK Preprint 9740, 1997 and JETP, v. 132, n. 5, p.1127

The solution of equation

$$\frac{d^2 D}{ds^2} + \left[K(s) + \varepsilon \ k(s)\right] D = \frac{1}{\rho \ (s)}$$

with modulation of gradient and curvature:

$$\varepsilon k(\phi) = \sum_{k=0}^{\infty} g_k \cos k\phi; \quad \frac{1}{\rho(\phi)} = \frac{1}{\overline{R}} \left(1 + \sum_{n=1}^{\infty} r_n \cos n\phi \right)$$

gives the expression for MCF:
$$\alpha_s = \frac{1}{\nu^2} \left\{ 1 + \frac{1}{4 \cdot (1 - kS/\nu)} \cdot \left[\left(\frac{\overline{R}}{\nu}\right)^2 \frac{g_k}{[1 - (1 - kS/\nu)^2]} - \frac{r_k}{r_k} \right]^2 \right\}$$

28 September-3 October, RuPAC 2008

Yury Senichev

1. Negative momentum compaction factor with minimum circumference and control of gamma transition in a wide region

The lattice has the remarkable feature:

The gradient and the curvature modulation amplify each by other if they have opposite signs, $g_k \cdot r_k < 0$

The ratio between them is desirable to have:

$$|r_k| \le \left(\frac{\overline{R}}{\nu}\right)^2 \left|\frac{g_k}{1 - (1 - kS)^2}\right|$$
 and $\frac{1}{4(kS/\nu - 1)} \cdot \left(\frac{g_k}{[1 - (1 - kS/\nu)^2]} - r_k\right)^2 \approx 2$

On the contrary they can compensate each other when they have the same sign.

ູ່

Then gamma transition varies in a wide region from $\gamma_{tr} \sim v_x$ to $\gamma_{tr} \sim iv_x$ with quadrupole strength variation only!!!

Yury Senichev

2. Dispersion-free straight section without special suppressor;

3. Low sensitivity to multipole errors and sufficiently large dynamic aperture

First condition:

To provide a **dispersion-free straight section**, the arc consisting of S_{arc} superperiods must have a 2π integer phase advance.

Second condition:

In order to drive the momentum compaction factor, the horizontal betatron tune v_{arc} must be less than the resonant harmonic of perturbation kS_{arc} , and the difference between them has to be of a minimum integer value. We take $v_{arc} - kS_{arc} = -1$

Third condition:

The arc superperiodicity S_{arc} has to be even and v_{arc} is odd.

28 September-3 October, RuPAC 2008

Compensation of sextupole non-linearity

• In that case the phase advance between any two cells located in the different half arcs and separated by $\frac{S_{arc}}{2}$ number of

superperiods is then equal to $\frac{v_{arc}}{S_{arc}} \cdot \frac{S_{arc}}{2} = \frac{v_{arc}}{2} = \pi + 2\pi n$.

 the total multipole of third order is canceled:

$$M_{3}^{total} = \sum_{n=0}^{N} S_{x,xy} \beta_{x}^{l/2} \beta_{y}^{m/2} \exp in(l\mu_{x} + m\mu_{y}) = 0$$

4. Minimum families of focusing and defocusing quadrupoles and separated adjustment of gamma transition, horizontal and vertical tunes

2008

Yury Senichev

19

 $D_{(m)}$

5. Convenient sextupole chromaticity correction scheme

Total chromaticity

$$\frac{\partial v_{x,y}}{\partial \delta} = -\frac{1}{4\pi} \int_{0}^{C} \beta_{x,y}(s) K_{x,y}(s) ds$$

Sextupole compensation

$$\frac{\partial v_{x,y}}{\partial \delta} = \pm \frac{1}{4\pi} \int_{0}^{C} \beta_{x,y}(s) \cdot D(s) \cdot S(s) ds$$

28 September-3 October, RuPAC 2008

Yury Senichev

6. Independent optics parameters of arcs and straight sections

- Tune arc does not depends on the transition energy and is kept constant;
- Special insertion on the straight section allows to match the $\beta_{x,y}$ -functions between arcs and straight sections;
- Dispersion-function on the straight sections always equal zero;
- All high order non-linearities are compensated inside each arc.

The "golden" ratio between S_{arc} and ν_{arc}

To fulfill all mentioned conditions we have to have the strictly fixed sets of S_{arc} and v_{arc} : 4:3; 6:5; 8:6; 8:7,.... and so on. 4:3 + 4:3

The second order non-linearity

 After some canonical transformation we can get the second order approach of Hamiltonian in the next view:

 $H(J_x, \mathcal{G}_x, \theta_x, I_y, \mathcal{G}_y, \theta_y) =$

 $v_x J_x + v_y J_y + \sum g(M, N, n_1, n_2, p) J_x^{M/2} J_y^{N/2} \exp i \left(n_1 \mathcal{G}_x + n_2 \mathcal{G}_y - p \theta \right)$

Now let us suppose that we are some where around of the third order resonance:

$$3v_x = p_0,$$

$$\overline{v}_x = v_x + \Delta$$

the Hamiltonian takes a view

$$H_{1}(J,\psi,\theta) = v_{x}J_{x} + v_{y}J_{y} + \frac{1}{2}J_{x}^{3/2} \{h_{3030p_{0}} \exp i(3\psi_{x} - p_{0}\theta) + c.c.\} + \zeta_{x}J_{x}^{2} + \zeta_{xy}J_{x}J_{y} + \zeta_{y}J_{x}^{2}$$

28 September-3 October, RuPAC 2008

Yury Senichev

The higher order resonance excitation and non-linear tune shifts

• the coefficients $\zeta_x, \zeta_y, \zeta_{xy}$ are the non-linear tune shifts:

$$\zeta_{x} = \zeta_{x}^{sex} + \zeta_{x}^{oct}$$
$$\zeta_{xy} = \zeta_{xy}^{sex} + \zeta_{xy}^{oct}$$
$$\zeta_{y} = \zeta_{y}^{sex} + \zeta_{y}^{oct}$$

as example

$$\zeta_{x}^{sex} = -\frac{3}{4} \left[\sum_{p=-\infty}^{\infty} \frac{\left| h_{3010p} \right|^{2}}{\nu_{x} - p} + \sum_{\substack{p=-\infty\\p \neq p_{0}}}^{\infty} \frac{3\left| h_{3030p} \right|^{2}}{3\nu_{x} - p} \right]$$

$$\zeta_x^{oct} = \frac{1}{32\pi\Delta^2} \int_0^{2\pi} \beta_x^2 O_x R d\theta$$

28 September-3 October, RuPAC 2008

Yury Senichev

Dynamic aperture after chromaticity compensation (for PS2)

 We calculated the dynamic aperture by the numerical tracking for one of options using MAD. It is ~Hor.=600 mm mrad and Ver.=400 mm mrad

Pro and Con for two types of lattices:

"resonant" and regular FODO (for PS2)

	Resonant lattice with p and gradient modulation		Regular FODO lattice with suppressors	
	Advantages	disadvantages	advantages	disadvantages
Crossing W _{transit}	No			Yes, at $\gamma \sim 10$
Variability and controll of W _{transit}	Yes			No
Necessity of dispers. suppressor	No			Yes
Decouping between arc and str. section	Yes			No
Free space on arcs	~16 x 3 m			2 x 8 m
Sextupole comp. on arc	Yes			No

Pro and Con for two types of lattices: "resonant" and regular FODO (PS2)

	Resonant lattice with p and gradient modulation		Regular FODO lattice with suppressors	
	Advantages	disadvantages	advantages	disadvantages
Sensitivity to high multipoles	Low			High
Sextupoles on str. section	Yes			No
Quadr. families number		3	2	
Max dispersion		~6÷10 m, depends on var.	~3.5 m	
Max $\beta_{x,y}$ function		48÷70/40÷70 depends on var.	40/40	
$3\sqrt{\beta x \epsilon rms} + (Dx\Delta p/p)^{**2}$ at εrms=0.68; Δp/prms=1x10 ⁻ ³	~40÷50 mm, depends on var.		~45 mm	

Thus, the "Resonant" structure has the features:

- 1. Ability to achieve the negative momentum compaction factor with minimum circumference and control of gamma transition in a wide region;
- 2. Dispersion-free straight section without special suppressor;
- 3. Low sensitivity to multipole errors and sufficiently large dynamic aperture.
- 4. Minimum families of focusing and defocusing quadrupoles and separated adjustment of gamma transition, horizontal and vertical tunes;
- 5. Convenient sextupole chromaticity correction scheme;
- 6. Independent optics parameters of arcs and straight sections

Stochastic cooling principe and requirements to the optics

Real and Imaginary arcs for Stochastic Cooling:

 The momentum compaction factor in imaginary and real arcs takes the meaning:

$$\alpha_{kp} = -\frac{1}{4v_{arc}^2} \qquad \qquad \alpha_{pk} = \frac{1}{4v_{arc}^2}$$

and slip factors:

$$\eta_{pk} = \frac{1}{\gamma^2} - \frac{1}{4v_{arc}^2}$$
$$\eta_{kp} = \frac{1}{\gamma^2} + \frac{1}{4v_{arc}^2}$$

In case $\gamma \approx 2v_{arc}$: the real arc is isochronous $\eta_{pk} \approx 0$ the imaginary arc has a slip factor $\eta_{kp} \approx 1/2v_{arc}^2$

28 September-3 October, RuPAC 2008

Yury Senichev

Twiss parameters of the real and imaginary arcs of SC option for HESR (FAIR)

The β -function and dispersion on the imaginary, the real 4-fold symmetry arcs

Yury Senichev

What can we do for Synchrotron Light Source Optics?

- Almost all **Synchrotron Light Sources** work higher of the transition energy, therefore chromaticity must be $\xi > 0$
- Since the horizontal emittance depends upon the horizontal dispersion function,

as
$$\varepsilon_x \propto \langle H \rangle_{dipole}$$
, where $H = \gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta'_x + \beta_x {\eta'_x}^2$ to get $\varepsilon_{x, min}$

the dispersion \rightarrow minimum value

- Stronger sextupoles are required \rightarrow the dramatic decreasing of DA
- There are two methods:
- Sextupoles have to be compensated
- Lattice w/o sextupole with imaginary γ_{tr}

Yury Senichev

SLS Lattices:

with sextupoles N-bend achromat with $\alpha > 0$

w/o sextupoles with $\alpha < 0$

Table name = TWISS

 β (m), D (m)

Sextupole compensation in SLS optic

• under strong influence of $(k_x + k_y)$ -th Integer resonance

$$H(I_{x}, I_{y}, \varphi_{x}, \varphi_{y}) = \frac{\left(k_{x}^{2} + k_{y}^{2}\right)^{1/2}}{k_{x}} \Delta_{x}I_{x} + \frac{\left(k_{x}^{2} + k_{y}^{2}\right)^{1/2}}{k_{y}} \Delta_{y}I_{y} + 2\left(h_{k_{x}, k_{y}, p}\right) I_{x}^{k_{x}/2} I_{y}^{k_{y}/2} \cos\left(k_{x}\varphi_{x} + k_{y}\varphi_{y}\right) + \zeta_{x}I_{x}^{2} + \zeta_{y}I_{y}^{2} + \zeta_{xy}I_{x}I_{y}$$

 For 3-d integer resonance the influence of the non-linearity in specified by the discriminant in the expression:

$$F_{x}^{1/2} = -\frac{3h_{30p}\cos 3\vartheta_{x}}{8\zeta_{x}} \pm \frac{1}{4\zeta_{x}}\sqrt{\frac{9}{4}h_{30p}} - 8\zeta_{x}\left(\Delta + \zeta_{xy}I_{y}\right)$$

```
28 September-3 October, RuPAC 2008
```

Yury Senichev

Nekhoroshev's criterium: the non-linearity in both planes have to have the same sign and $4\zeta_x\zeta_y \ge \zeta_{xy}^2$

- The lattices with $\zeta_x >> h_{30p}$ have to be classified as a special lattice, since it is a case, when the value of h_{30p} is effectively suppressed, but the non-linearity remain to be under control and strong.
- If the sign of the detuning Δ coincides with the sign of the tune shift ζ_x , the discriminant is negative and the system has only one centre at $I_x = 0$
- The quasi-isochronism condition by Nekhoroshev is fulfilled, when

$$k_{x} \left(2\zeta_{x}I_{x}^{r} + \zeta_{xy}I_{y}^{r} \right) + k_{y} \left(2\zeta_{y}I_{y}^{r} + \zeta_{xy}I_{x}^{r} \right) = 0 \qquad - \\ \zeta_{x}k_{x}^{2} + \zeta_{xy}k_{x}k_{y} + \zeta_{y}k_{y}^{2} = 0$$

Convex or concave resonant surface with maximum stable region

```
28 September-3 October, RuPAC 2008
```

Yury Senichev

Dynamic apperture tracking

negative and positive detune

ζ>0; Δ<0

ζ>0; Δ>0

28 September-3 October, RuPAC 2008

Conclusion

"Resonant" lattice was developed with features:

- ability to achieve the negative momentum compaction factor using the resonantly correlated curvature and gradient modulations;
- gamma transition variation in a wide region from $\gamma_{tr} = v_x$ to $\gamma_{tr} = iv_x$ with quadrupole strength variation only;
- integer odd 2π phase advance per arc with even number of superperiod and dispersion-free straight section;
- independent optics parameters of arcs and straight sections;
- two families of focusing and one of defocusing quadrupoles;
- separated adjustment of gamma transition, horizontal and vertical tunes;
- convenient chromaticity correction method using sextupoles;
- first-order self-compensating scheme of multipoles and as consequence low sensitivity to multipole errors and a large dynamic aperture

Conclusion "Resonant" lattice can be used:

- In the heavy ion and proton synchrotron lattice without the transition energy crossing
- In the lattice with high efficiency of stochastic cooling
- In the Synchrotron Light Source lattices w/o sextupoles or with selfcompensated sextupoles