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IS hecessary to us?

| In what cases the structure with such properties

= To exclude the transition energy crossing
= To have the higher collective instability threshold

= To match in longitudinal plane the different
accelerators

= [0 adjust the different local slip factor for the
optimized stochastic cooling

= [0 avoid the sextupoles in the synchrotron light
sources
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The requirements to the absolute value
of slip factor:

. For many collective instabilities the threshold is proportional the slip

factor
r] = 1/7‘[1‘2_ 1/y2

For instance, from the Landau damping theory the stability requires a
minimum spread in incoherent frequencies for longitudinal motion

2
(2] et
W p 2727110627,82
So, the absolute value of slip factor module is desirable to have as large
as possible.

Z;(n)
n

I1. The transition energy crossing y=y,. (N=0) has to be excluded, since
the longitudinal stability disappears.
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The requirements to the absolute value
of slip factor:

ITII. The longitudinal beam size is determined by the ratio

\/ 27rh|77|£2rev
Ag . =1tW
eVp Rcos g,

and the absolute value of slip factor can be used as additional
factor for the matching between two accelerators or/and control of
beam sizes during acceleration.
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The requirements to the sign of slip factor:

IY. Many investigations devoted to the beam stability declare that the
beam is more stable below the transition energy

y<y, => n<0

Besides, in the synchrotron light sources the natural chromaticity
accords to the transverse stability criteria for the negative slip factor.

So, if the lattice has the imaginary gamma transition
n=1/iG,)* -1/y* <0

all requirements can be fulfilled!!!
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History of lattice with imaginary gamma-
transition

in 1955 Vladimirsky and Tarasov suggested method to get the imaginary ¥, and did it
by increasing number of “compensating magnets” with a reversed fielcf but the same
gradients, as would be called for in a design with no compensating magnets and
where is slightly more than the tune.

In 1958 Courant and Snyder quantitatively described this idea of the negative
momentum compaction factor.

:_ater many authors tried to realize this idea of imaginary transition energy in different
attices:

-In 1972 Lee Teng suggested the modular method;

-In 1974S Bruck developed the regular focusing structure with the “missing” magnet cell in
aturne II;

-In 1983 Franczak, Blasche, Reich excited superperiodically the quadrupoles for the
SIS-18;
-In 1985 Gupta, Botman, Craddock at an initial design stage of the TRIUMF KF used
missing magnet;
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History of lattice with imaginary gamma-
transition

-In 1989 I:Senichev, Golubeva, Iliev suggested the “resonant” lattice for Moscow Kaon
actory;

-In 1992 Ng, Trbojevic, Lee applied the modular method of Lee Teng for MB (FNAL);
-In 1992 U.Wienands, N.Golubeva, A.Iliev, Yu.Senichev, R.Servranckx addopted
the “resonant” lattice for Kaon Factory (TRIUMF);
-In 1993 E. Courant, A. Garen and U. Wienands took the “resonant” lattice for LEB (SSC);

-In 19955{3 Esg)ichev wrote the “resonant” lattice theory and applied it for Main Ring

-In 2000 H. Schonauer, Yu. Senichev et al., The “resonant” lattice for Proton driver for a
Neutrino Factory (CERN)

-In 2007 Y.Senichev et al., The “resonant” lattice for Super-Conducting option of HESR (FAIR)
-In 2008 The “resonant” lattice is one of the candidate for PS2 (CERN)
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Regular and Irregular lattices

Momentum Compaction factor (MCF):
ID(S) 79
B o P(F)

D" +K(9D =

p(F)
If in the optics with eigen frequency v the curvature 6(0) is modulated with

frequency

where the dispersion D(0) is:

o(9) =1/ p(9) ~ B ?|+1/R

the dispersion solution and Momentum Compaction Factor
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Regular lattice

In conventional regular FODO lattice @> >v.

Therefore the dispersion oscillates with eigen frequency (tune) v:
D(9) = 4" +D

Then Momentum Compaction Factor (MCF) is determined by average values ratio:
and the maximum energy of accelerator without the transition energy crossing is

determined by 7y, . <V or for the n/2 phase advance FODO lattice ¥, ,,~Ncell/4
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Regular lattice for PS2 (3-50 GeV) based on FODO cells
with real transition energy vy, ~10
parameters taken from PS2 report by Wolfgang Bartman)

FODO cell with magnet length Arc based on FODO lattice with tune per cell ~849°
L=3.79m and drift 1.6m The total length (22 cells) 513.5 m; B, ,~39 m, D,~3.5m
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To make higher y,. than 50 the total number of FODO
cells has to be increased up to 110 per arc

Conclusion: The only possible solution is the imaginary gamma
transition with the wide control of its absolute value
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Irregular lattice with curvature modulation
(missing magnet lattice)

In case of eigen frequency v is enough close to the curvature oscillation

with the superperiodicity frequency S= v +0, the dispersion oscillates with
the forced frequency ® =S:

ei‘% +D

y? - 52
In irregular structure MCF depends on the curvature modulation Band
detuning 0= S- v<< v :

1 B?
1/2 20V
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Irregular PS2 lattice with curvature modulation
("missing” magnet lattice)

3 regular FODO cells with total length 3 irregular FODO missing magnet cells
3 x 23.21 m=69.63 with total length 76.8 m
Lmag=3-7 M Lmag=4-9 m
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Zero momentum compaction factor in the “missing”
magnet lattice

In arc length~620 m MCF<0 at v>0.82
In arc length~600 m MCF<0 at v>0.875
In arc length~580 m MCF<O0 is not reached

MCF x 1000, Dmax, BetaX max x 0.1
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advanced phase per superperiod x 360 deg
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Conclusion
“Missing magnet” lattices has
advantages:
- practically does not perturbs
B-functions;
disadvantages:

- requires the large phase advance
value,

- significantly increases the arc length.
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Results of "Resonant” lattice theory:

From the article: Yu. Senichev, A “resonant” lattice for a synchrotron with a low or
negative compaction factor, KEK Preprint 9740, 1997 and JETP, v. 132, n. 5, p.1127

The solution of equation

d’D
. HK(s)+ & k(s)|D= > (S

with modulation of gradient and curvature:

% 1 1
£ k(@) = ng cos k¢; M:R[”Z
k=0

gives the expression for-MCF:

—\ 2
o =%<1+ ! . £ Ek 5 17 s
VT a=kSv) (v ) = —kS/v)]
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1. Negative momentum compaction factor with
minimum circumference and control of gamma
transition in a wide region

The lattice has the remarkable feature:
The gradient and the curvature modulation amplify each by other if they have opposite

signs, g, 1 < 0

The ratio between them is desirable to have:
gk

—\2
ms[ﬁj 2
v ) |1-(1-kS)

On the contrary they can compensate each other when they have the same sign.

2
and : : St ——r | =2
4kSTv—1) | [I=(1—kS/v)?]
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Then gamma transition varies in a wide region
from y ~v_to y ~iv,
with quadrupole strength variation only!!!
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2. Dispersion-free straight section without special
suppressor;

3. Low sensitivity to multipole errors and sufficiently
large dynamic aperture

First condition:

To provide a dispersion-free straight section, the arc consisting
of S, superperiods must have a 27 integer phase advance.

Second condition:

In order to drive the momentum compaction factor, the horizontal
betatron tune v,,. must be less than the resonant harmonic of

perturbation 45, , and the difference between them has to be of a
minimum integer value. We take Ve =4S, =1

Third condition:
The arc superperiodicity S, has to be even and v_,.. is odd.
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Compensation of sextupole non-linearity

First half arc .|  Second half arc

In that case the phase advance between
any two cells located in the different half

arcs and separated by S« number of

2

superperiods is then equal to SR

1% S 1% = S
Sm' S T, —ET2m TR T O I

arc 2 . 2 . .
the total multipole of third order is
canceled:

N
M =38, BB expin(lu, +mu,) =0

n=0
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4. Minimum families of focusing and defocusing

quadrupoles and

separated adjustment of gamma transition, horizontal

SUPERPERIOD ov ov
% 1. X > >>
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5. Convenient sextupole chromaticity correction scheme

Total chromaticity .
Wy L .
Xy o_ - 5 i
= Sextupole compensation I ;
avxy + 1 Tﬂ () D() S( )d 3201‘061‘020
— =T — §)-D(s)-S(s)ds ' R,
00 4" ©

Half-superperiod

Vertical chromaticity
w ro - [==) - [ w

BPM BPM BPM
abDl B OF1 B QD2 QF 2
i, 5 e B
o MPC MPC MIE sD SF
20 0 0 10 20
dG/G, %
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6. Independent optics parameters of arcs and
straight sections

= Tune arc does not depends on the transition energy and is kept
constant;

= Special insertion on the straight section allows to match the
B, ,-functions between arcs and straight sections;

= Dispersion-function on the straight sections always equal zero;

= All high order non-linearities are compensated inside each arc.
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The “golden” ratio between S, and v,

To fulfill all mentioned conditions we have to have the strictly fixed sets
of S,,.,and v, :

arc

4:3; 6:5; 8:6; 8:7,.... and so on.

l

4:3 + 4:3
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B (m

B (m)

8 superperiodical lattices (for PS2)

with v
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The second order non-linearity

= After some canonical transformation we can get the second order
approach of Hamiltonian in the next view:

H(J,.8.,0,,1,,9,.0,) =
v, +v,J, + > g(M,N,n,n,, p)Jr2JN"? expi(nlgx +n,9, —pH)

= Now let us suppose that we are some where around of the third order

resonance. _
3V. = p,»

V.=V +A
s the Hamiltonian takes a view
1
H (J,y,0)=v.J +vJ, +§Ji/2 {h3030p0 expi(3y . — p,0) + c.c.}+

2 2
cJ.+E JJ +§ny

Xy xoy
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The higher order resonance excitation

and non-linear tune shifts

m the coefficients

= as example

Yury Senichev

$.»¢,,6,,  arethe non-linear tune shifts:

Co=8r g
S =+ 8y
é/y — é/;ex +é/;ct
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Dynamic aperture after chromaticity
compensation (for PS2)

= We calculated the dynamic aperture by the numerical tracking for one of options
using MAD. It is ~Hor.=600 mm mrad and Ver.=400 mm mrad

Mol e PEN aticr ok pmed by Vi Sciche Mefld 2 ety PR e de sigeed by Vit Seciches
ﬁmﬂﬁzmaﬂ-r - 4 i 1400 106 170847 o Peil .:.-:éanJ.'J'.'J 1470006 1E4EFT
T ¥ 1 1

el 0005 -

P’ pm

a0

ans

anaz

an

an

-0

-2002

-0007
-0

-0005
-0 F R -0.0 Fili] an aos (1] 05 ax
piml

Tukde mime m TRACK Tulde mamc = TRACK
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Pro and Con for two types of lattices:
“resonant” and regular FODO (for PS2)

Resonant lattice with p and gradient | Regular FODO lattice with
modulation suppressors
Advantages disadvantages advantages disadvantages

Crossing Wi, it No Yes, at y~10
Variability and Yes No
controll of W,
Necessity of No Yes
dispers. suppressor
Decouping between Yes No
arc and str. section
Free space on arcs ~16 X3 m 2x8m
Sextupole comp. on Yes No
arc
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Pro and Con for two types of lattices:
“resonant” and regular FODO (PS2)

Resonant lattice with p and gradient | Regular FODO lattice with
modulation suppressors
Advantages disadvantages advantages disadvantages
Sensitivity to high Low High
multipoles
Sextupoles on str. Yes No
section
Quadr. families 3 2
number
Max dispersion ~6-+10 m, depends ~3.5m
on var.
Max Bx,y function 48-+-70/40=70 40/40
depends on var.

3vBxerms+(DxAp/p)**2 at ~40+50 mm, ~45 mm
erms=0.68; Ap/prms=1x10-
; depends on var.
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Thus, the “"Resonant” structure has the features:

2

3

4

5

6

. Ability to achieve the negative momentum compaction factor with minimum

circumference and control of gamma transition in a wide region;
. Dispersion-free straight section without special suppressor;
. Low sensitivity to multipole errors and sufficiently large dynamic aperture.

. Minimum families of focusing and defocusing quadrupoles and separated
adjustment of gamma transition, horizontal and vertical tunes;

. Convenient sextupole chromaticity correction scheme;

. Independent optics parameters of arcs and straight sections

Yury Senichev
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Stochastic cooling principe and requirements to
the optics
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>
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Real and Imaginary arcs for Stochastic Cooling:

= The momentum compaction factor in imaginary and real arcs takes the

meaning: | |
Xhp =7~ Xpk =~
Ware 4 are
= and slip factors: N
ok = 2
Y AVare
. 1 N |
kp =" 2
4 AV

Incase 7 =2Vgpe :
the real arc is isochronous 77, =0
the imaginary arc has a slip factor 77z, =1/ 21/621,,0
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Twiss parameters of the real and imaginary arcs
of SC option for HESR (FAIR)

= The B-function and dispersion on the imaginary, the real 4-fold symmetry arcs
00 0000 0000000

4-fold symmetry HESR lattice designed by Yu Senichev
30, RSB0 AIX version 8.22/14
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What can we do for Synchrotron Light Source
Optics?

Almost all Synchrotron Light Sources work higher of the transition energy,
therefore chromaticity must be £€>0

Since the horizontal emittance depends upon the horizontal dispersion function,

as &, o« (H) ,where H=y.n;+2a,n.n,+B.1 toget

dipole EX/ min

the dispersion >minimum value

Stronger sextupoles are required - the dramatic decreasing of DA
There are two methods:
Sextupoles have to be compensated

Lattice w/o sextupole with imaginary ¥,
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Sextupole compensation in SLS optic

= under strong influence of (k,+k )-th Integer resonance

(2 +#2)" (k2 +

/2
H(,I,0.0,)= p AT +-= ky)l A, +

x y
ky!2 phy!2
2<hkx’ky’p>1x 1) cos(kxgox+ky¢y)+

2 2
Cx[x + é’y]y + gxy[x[y

= For 3-d integer resonance the influence of the non-linearity in specified
by the discriminant in the expression:

a2 :_3h30p cos3§x . 1
' 8¢, 4,

\/%h30p _8é/x(A+é/xy1y)
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Nekhoroshev’s criterium:
the non-linearity in both planes ha;ve to
have the same signand 4.6, 24,

The lattices with &, >> hy, » have to be classified as a special lattice,

since it is a case, when the value of h30p is effectively suppressed, but the
non-linearity remain to be under control and strong.

If the sign of the detuning A coincides with the sign of the tune shift ¢, the
discriminant is negative and the system has only one centreat 7 =0

The quasi-isochronism condition by Nekhoroshev is fulfilled, when

k. (2§x1; +Z,, 1;)+ k, (2§y I'+¢,, 1;): 0 Convex or concave
12 K £ =0 —* resonant surface with
e maximum stable region

28 September-3 October, RUPAC
Yury Senichev 2008 36



Dynamic apperture tracking

= nhegative and positive detune

nEas . ppon
=

e —

e
557 =

s -
sy —

-:557

s -

0.53%

28 September-3 October, RUPAC
Yury Senichev 2008 37



Conclusion
“Resonant” lattice was developed with features:

= ability to achieve the negative momentum compaction factor using the
resonantly correlated curvature and gradient modulations;

= gamma transition variation in a wide region from y, =v, to y,=iv, with
quadrupole strength variation only;

= integer odd 2n phase advance per arc with even number of
superperiod and dispersion-free straight section;

= independent optics parameters of arcs and straight sections;
= two families of focusing and one of defocusing quadrupoles;

= separated adjustment of gamma transition, horizontal and vertical
tunes;

= convenient chromaticity correction method using sextupoles;

= first-order self-compensating scheme of multipoles and as consequence
low sensitivity to multipole errors and a large dynamic aperture
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Conclusion
“"Resonant” lattice can be used:

= In the heavy ion and proton synchrotron lattice without the transition
energy crossing

= In the lattice with high efficiency of stochastic cooling

= In the Synchrotron Light Source lattices w/o sextupoles or with
selfcompensated sextupoles

28 September-3 October, RUPAC
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