XXI Российская конференция по ускорителям заряженных частиц RuPAC- 2008

28 сентября — 3 октября 2008 г., г. Звенигород, Россия

Influence of beam **space charge on dynamical aperture** of TWAC storage ring

V.V. Kapin, A.Ye. Bolshakov, P.R. Zenkevich ITEP, Moscow, Russia

Alikhanov Institute for Theoretical and Experimental Physics Russian Federation State scientific center

Abstract

- **High intensity ion beams** are planned to store in Terra Watt Accumulator (**TWAC**) at ITEP (Moscow).
- The **dynamic aperture** (DA) => a size of the phasespace domain for safe operation with the beam.
- DA is studied numerically:
 - the space charge forces (the "frozen core" model);
 - perturbations of the guiding magnetic field
 - particles with non-zero momentum deviations.
- An economical DA-algorithm (GSI, Micromap-code)-> for MADX-code via its macro-scripts.
- The results => a significant dependence of DA on intensity (especially for particles △p/p≠0)

Dynamic aperture

- Circular accelerator bending dipoles (D) + focusing quadrupoles (Q).
- High-order multipoles in D & Q =>

 the non-linear beam-dynamics
 losses of particles with large amplitudes of betatron oscillations.
- => The motion is stable only inside of a restricted phase space area (a stability domain).
- A size of the stability domain is related to DA.
- An accurate estimate of the DA is important ! [1, 2].
- The DA is defined usually as the *radius of the largest circle inscribed inside* the domain of stable initial conditions (in units of Courant-Snyder invariant).

[1] W.Scandale, EPAC'92 , pp. 264, (1992).[2] E.Todesco & M.Giovannozzi, Phys.Rev. E-53, No.4, pp.4067 (1996).

The space-charge distribution

- Linear approximation: constant beam density => => the SC-field results in linear tune-shifts
- Non-linear approximation: realistic beam density (e.g., Gaussian) => non-linear SC-fields affect on the beam trajectories and DA (especially with non-linear perturbations of the guiding magnetic field).

These distributions are available for MAD-codes (MAD-8 & MAD-X) !!!

History & Actuality

- DA of TWAC studied without account of the s. c. effects (A. Bolshakov, P. Zenkevich, Preprint ITEP, 2000, No. 26.)
- Estimates of SC influence on TWAC's DA for £x= £y and ∆p/p=0 (A.Bolshakov & P.Zenkevich, Atomn.Energiya, v.91, 4, p.294, 2001)
- The assumptions (Ex= Ey and △p/p=0) are too rough !!! (G.Franchetti, "DA for FAIR" in GSI-2005-1. p. 55)

Our goal – more detailed study the DA dependence on beam current and momentum deviation at non-linear SC effects & the guiding magnetic field non-linearity.

Non-linearity of Magnetic Field

- Magnetic field nonlinearity for TWAC in Ref.[5].
- The magnetic structure 8 periods;
- One period 11 C-blocks (manufactured at the factory) & one E-block (at ITEP workshop).
- C-blocks have small fluctuations of nonlinearity.
- E-blocks have significant fluctuations.

The magnetic field is expressed by Taylor series

$$\Delta B_{y} = \rho B_{0} \sum \frac{c_{n}}{n!} x_{n}$$

Block name	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	<i>C</i> ₆
C-blocks	0.32	-0.07	-9.4	-0.08	-0.07	-0.07
E ₁	0.31	1.11	81.9	-1.84	-1.11	1.21
E_2	0.31	1.16	88.2	-1.67	-1.14	1.03
E ₃	0.32	0.71	-9.50	-1.32	0.11	0.18
E ₄	0.32	-0.29	-29.5	0.12	0.17	-1.16
E ₅	0.32	0.52	-24.6	-0.52	0.55	-1.21
E ₆	0.31	0.70	136.1	-1.80	-2.34	2.417
E ₇	0.32	0.92	68.8	-1.99	-0.98	1.34
E ₈	0.31	0.89	105.7	-1.88	-1.41	1.47

[5] A. Bolshakov, P. Zenkevich, Preprint ITEP, 2000, No. 26.

The values of c_n (n=1...6) for all blocks are given in Table 1 using the units $[m^{-2}]$, $[m^{-3}]$, $[m^{-4}]$, $[m^{-5}\times10^4]$, $[m^{-6}\times10^6]$, $[m^{-7}\times10^8]$, respectively.

DA calculation algorithm

- Beam dynamics for coasting beam in 4D
- To define the DA numerically, one must scan all possible combinations of all 4 coordinates.
 => Direct evaluation of DA is very CPU time consuming.

 > An economical algorithm for the DA calculations used for SIS-100 with the Micromap-code (G.Franchetti, GSI)
 => for MADX-code via its macro-scripts.

Why MADX ?

ITEP-CERN collaboration in 2004-2006

- MAD => code for the beam dynamcics in accelerators.
- MAD-X is the successor of MAD-8 (frozen in 2002).
- MAD-X has a modular organisation => Development Team: Custodian (F.Schmidt) + Module Keepers
- "PTC-TRACK module" is a main feature of MAD-X developed by V.Kapin (ITEP) & F.Schmidt (CERN)

MAD-X Home Page: "http://mad.home.cern.ch/mad/"

"MADX+S.C." project

- Similar methods had been already implemented in other beam dynamics codes. (see references, below.)
- "frozen s.c. field" approximation
- thin elements (SC-kicks) : linear (MATRIX), nonlinear BEAMBEAM (Gaussian)
- With MADX any number kicks !
- Our task is a step-by-step adaptation some of them to MADX, which is presently one of the most advanced code for nonlinear beam dynamics simulations without space-charge.

M. Furman, 1987 PAC, pp. 1034-1036. - FRANKENSPOT Y. Alexahin, 2007 PAC, report code THPAN105. -(MAD8 – only 200 BEAMBEAM !)

The 2nd order ray tracing integrator for a number of S-C kicks

Iterations to find beam sizes at non-zero beam current

- No Equilibrium solution $Q_{x,y}$ =int => (TWISS=ERR)
- Tune value oscillates around a final value;
 => near Q=n iterations with steps for the beam current

Iterations in two steps Straight lines shows analytical values according to the Laslett's formula for tune shifts.

Resulting beam sizes for a simple 4-bend FODO structure

Tracking with many BB Example for a simple linear lattice

- S.C kicks by BBelements for non-linear tracking;
 (C.O. shifts are included; a total number BBelements is not limited);
- Since BB is not included into MADX-PTC yet, thin-lens tracking with MADX (similar to MAD8) with lattice conversion by MAKETHIN command

Application to real ring – ITEP's TWAC

Economical Algorithm for DA-calculations Example for SIS300 (2007 at GSI)

- Define boundary in (X,Y) plane at px=py=0
- Calculate Courant-Snyder invariants (e) for every trajectory on boundary at every turn

Algorithm for DA-calculations (continued-1)

4E-05 m·rad => 40 mm·mrad

DA-Algorithm (continued-2)

Two possible sorting:

- As minimum of minimum for ex, ey, then projected to injection ray
- As cross between injection ray and minimum of sums

ex+ey

DA-Algorithm (continued-3)

• For every scheme the average radius (via the area) and minimum radius are calculated:

DA vs. Np at $\Delta p/p=-0.5\%$.

Acknowlegements

The authors thank

- Dr. G. Franchetti (GSI) for comprehensive discussions on the DA-algorithms
- Dr. F. Schmidt (CERN) for kind help with MAD-X-code implementations

END !

DA vs. Np at $\Delta p/p=0$

DA vs. Np at $\Delta p/p=-0.5\%$.

