

Development of the Positron Injector for LEPTA Facility

V.Bykovsky, M.Eseev^{*}, A.Kobets, I.Meshkov, V.Pavlov, R. Pivin, A.Rudakov, G.Trubnikov, <u>S.Yakovenko</u>

* - Lomonosov Pomor State Universitet, Arkhangelsk

Contents

- 1. Positron injector (design and main parameters)
- 2. Cryogenic source of slow monochromatic positrons
- **3.** Positron trap
- 4. Status and nearest plans

1. Positron injector (design and main parameters) LEPTA Facility

3

1 - positron source ²²Na, 2 - radioactive protection shield, 3 - vacuum valve, 4 - vacuum chamber for pumping out and diagnostic tools, 5 - positron trap, 6 - vacuum isolator, 7 - positron vacuum channel, 8 - vacuum "shutter" (fast valve), 9 - ion pump, 10 - turbopump, 11 - LHe vessel.

1. Positron injector (design and main parameters) (Contnd)

Design parameters of the positron injector

Length, <i>m</i>	6,2
Positron injection energy, keV	2.0 ÷ 10.0
Longitudinal magnetic field, G	400
Longitudinal magnetic field in the trap, G	1500
Residual gas pressure, <i>Tor</i>	1 .10 ^{−9}
Beam radius, <i>cm</i>	0.5
Accumulation time, s	100
Injection pulse duration, ns	300
Number of positrons in injection pulse	1.10 ⁸
Positron momentum spread	1.10-4

The cryogenic source. 1-cupper subscribe with isotope ²²Na , 2- cupper cylinder, 3- cryogenic heat exchanger of the cupper cylinder, 4 – thermal shield , 5- cryogenic heat exchanger of the thermal shield , 6- nozzles.

The Cryogenic Moderator of Positrons

RUPAC 2008 September 28 - October 3, 2008 Zvenigorod (Russia) 8

Positron Energy Spectrum

9

The stand "Positron source"

RUPAC 2008 September 28 - October 3, 2008 Zvenigorod (Russia)

The slow positron registration scheme

2. The cryogenic source of slow monochromatic positrons (Contnd) The elements of registration system

Slow Positron Yield vs Frozen Neon Thickness

Slow Positron Spectrum vs Frozen Neon Thickness

The positron spectrum at the e+ flux of $5.8*10^3$ positrons per sec of the average energy of 1.2 eV at the width of 1 eV has been obtained. The moderator efficiency is 1%.

3. Positron trap

"Surko" Trap

16

The trap dimensions

Set of electrodes

Electrode	Inner diameter (mm)	Length (mm)
1	12	50
2	12.7	500
3	30	495
4	200	160
5	200	160
6	200	160
7	200	160
8	200	20

Assembled positron trap

Testing the trap with electrons

The test electron gun current has been chosen corresponding to $dN/dt = 5*10^6$ electrons/sec (0.7 pA electron current) of the energy of 50 eV and spectrum width of a few eV. These parameters correspond to the positron beam which we expect from a radioactive source of an activity of 25 mCi.

Single pass electron beam trough the trap to the collector.Trap has been opened in pulse mode

Stored electrons extracted to the collector

Electron storage studies

Typical storage functions

Data Analysis

Electron storage equation

$$\frac{dN_{trap}}{dt} = \varepsilon N - \frac{N_{trap}}{\tau_{life}}$$

24

 N_{trap} – electron number stored in the trap, ε – storage efficiency, τ_{life} - electron life time in the trap.

It gives:
$$N(t) = \varepsilon N \tau_{life} (1 - e^{-t/\tau_{life}})$$

Two asymptotes:
$$N(t) = \begin{cases} \varepsilon Nt, & t \ll \tau_{life}, \\ \varepsilon N \tau_{life}, & t \to \infty. \end{cases}$$

At $(dN_e/dt)_{entrance} = 4.5 \cdot 10^6 \text{ s}^{-1}$ from the Fig. in the previous slide we find: $\epsilon = 0.18$, $\tau_{life} = 12.5 c$

Rotating Electric Field Method

One electrode is placed under combined alternative + permanent potentials (Fig.a, b, c).

Rotating Electric Field Method (Contnd)

Stored electron number vs amplitude of the rotating field

Stored electron number vs frequency of the rotating field

Direction of the field rotation – opposite to electron drift in crossed B-field and e-field of electron space charge!

Rotating Electric Field Method (Contnd)

Stored electron number vs time (B=1.2kGs)

Particle Extraction from The Trap

Particle Extraction from The Trap (Contnd)

Particle storage and "the space charge limit"

Estimated bunch intensity when the trap opens:

$$\Delta U = \frac{eN}{L} \cdot \left(1 + 2 \cdot \ln \frac{b}{a}\right)$$

N – particle number in the bunch, L – the bunch length, $a,\ b$ – the radii of the bunch and the tube in the Area 2.

For N = $3 \cdot 10^8$, a = 1 mm, b = 15 mm, L = 250 mm we find

 $\Delta U = 11.1 V$

Particle storage and "the space charge limit"

Experimental proves:

1) "Leak" current was measured and it was found on the electrode in the Area #2!

2) "Dynamical control" of the Area #2 potential allows us to increase the particle number in the bunch ~ by 2 times!

4. Status and nearest plans

New positron source from South Africa

New positron source activity of 25 mCi for LEPTA facility has been donated by iThemba LABS (South Africa)

4. Status and nearest plans

The positron injector under assembling

Our great thanks to iThemba Labs and personally to Dr. Lowry Conradie for donation of the e⁺ source that enables us to reach the main goal of the LEPTA project – Ps generation in flight.

Thank you for attention

Линия напуска неона в систему

36

Расчет толщины слоя намороженного замедлителя

Эффективность конденсации

Объем неона, испаряемого в единицу времени

$$\dot{V}_{Ne} = \frac{\dot{n}_{Ne}''}{P_{atm}}$$

 $\boldsymbol{\delta} = \frac{\boldsymbol{V}_{Ne}}{\boldsymbol{K} \times \boldsymbol{S}} \boldsymbol{\varepsilon} \qquad \boldsymbol{\varepsilon} = (1 - \frac{\dot{\boldsymbol{n}}_{Ne}}{\dot{\boldsymbol{n}}_{Ne}}) 100 \%$

$$\dot{n}_{Ne}'' = \delta P U$$

$$\dot{n}_{Ne} = \mathcal{A}P_0 \cdot U$$

ε = 99,9%

 $T_{\rm исп}(10 \text{ мкм}) = 4 \cdot 10^6 \text{ c}$

