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Abstract 
In high energy storage rings (for example, in proposed 

antiproton High Energy Storage Ring (HESR), which is 
part of the international accelerator complex FAIR), it is 
intended to use electron cooling for the compensation of 
beam heating due to beam interaction with the internal 
pellet target. For beams with high emittance (such 
emittance is necessary in order to get sufficient beam- 
target overlap) magnetized electron cooling does not 
work. Therefore we consider an analytical theory of beam 
equilibrium in presence of internal target using formulae 
derived in [1] for non-magnetized model of electron 
cooling. As a result we find the analytical expressions for 
momentum spread and the electron current as function of 
the beam emittance and beam energy. This theory is 
applied for estimation of HESR parameters. 

Introduction 
Circular accelerators and storage rings are used for the 

physical experiments with the internal pellet target, which 
heats the beam in transverse and longitudinal direction. 
For compensation of beam heating the electron or 
stochastic cooling can be applied. The beam equilibrium 
parameters in the proposed antiproton ring (HESR) were 
considered by use of the numerical [2] and analytic 
methods [3] with account of the following processes: 1) 
transverse Coulomb scattering and energy straggling in 
the internal target; 2) electron cooling; 3) intra-beam 
scattering (IBS) inside the p-bar beam.  

One of main physical goals in HESR is 
“monochromatic” experiments with small momentum 
spread (��~10���. For achievement of so small 
momentum spread it was proposed to use “magnetized” 
electron cooling with high magnetic field in the cooling 
section. Therefore in paper [3] for analysis of the 
equilibrium conditions it was used Parchomchuk’s model 
of magnetized cooling [4]. 

However, last efforts on the pellet target design have 
shown that this target has large angular divergence of the 
pellet beam. Therefore for improvement of the crossing it 
is desirable to use the antiproton beam with high 
transverse emittance. For such emittance the 
Parchomchuk’s model of magnetized cooling is non-
applicable since the transverse velocity of the p-bar beam 
in the cooling section is much higher then Parchomchuk’s 
“effective velocity”. Taking into account these 
considerations we apply to solving of the problem a 
theory of “non-magnetized” cooling for “flattened” 
velocity distribution developed in [1]. The theory is 
utilized for calculation of the equilibrium conditions of 
the beam in HESR.  

We introduce the following simplifying assumptions: 1) 
the ion beam has Gaussian distribution in with equal rms 
sizes on both transverse degrees of freedom; 2) the 
electron beam in the cooling section has the circular 
cross-section with radius a and uniform density and 
Gaussian distribution of velocities; 3) the target is 
uniform with width equivalent to the “averaged” width of 
the pellet target; 4) the beam is relativistic (γ≫1): the last 
assumption allows us to use simplified model of IBS.  

List of Symbols 
In the beam rest frame (BRF) all parameters are marked 

by the sign �, 	� , �� are the ion charge and atomic 
numbers number, �� , �� the electron and proton masses, � , � classical radii electron and ion (�,� � �	�,�����/��,���,���, ��,� are, correspondingly, the proton and 
electron rest energy, ��=15 MeV is the characterizing 
parameter for multiple Coulomb scattering in the target, 
β,γ are relativistic parameters in in the laboratory frame 
(LF), ��	 and �	 the ion velocity and its modulus in BRF, ��	  and �� are the electron charge density in BRF and in 
LF, �

���  and �
�� the Coulomb logarithms for non-
magnetized cooling and IBS, � � ��/�, where ��  is the 
length of the cooling section, C is the ring length, �� , ��  
the electron and ion beam current measured in A, N 
number of ions per ring, a the electron beam radius (the 
beam is assumed to be uniform), ���	  and ���	  are, 
correspondingly, transverse and longitudinal temperature 
of the electron cooling beam in BRF, �
��� - beta-function 
in the cooling section, � the rms emittance of the ion 
beam in units m·rad, �� the r. m. spread of the ion beam 
on relative momentum (∆p/p), �� beta-function at the 
target, �� the target length in g/cm2,  � the radiation 
length of the target material (for hydrogen  �=58 g/cm2).  

Non-magnetized electron cooling 
Let us assume that the horizontal and vertical rms 

velocity spreads of the antiproton and the electron beams 
in the cooling section are equal: ���	 � ���	 , 0��	 � ���	 . 
The rms longitudinal velocity spreads are ���	  and ���	 , 
respectively. Then, according to [1], we obtain the 
following equations for evolution of these parameters: 
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Here parameter % � ����� �������� ��
����� �������� ��. The functions Χ�%� 

and Υ�%� are defined by  
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For high ion emittances ���	 , ���	 , ���	 ( ���	 , and % (1. If % ) 0, then Χ�%� ) */4, Υ�%� ) 1. The  

coefficient ,	 � -2/*4*����������	 /�

��� . Plots of the 
functions Χ�%� and Υ�%� are given at Fig. 1. After 
transfer to LF we obtain: 
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Here ��.. � 4�
���
/��
0� ; in LF parameter % �

/��//����'��/1�������
���'(��)/&���  (1���.. � -2���	 /��). In numerical 

calculations it is useful to express the electron density 
through the electron current ��  using the relation  �� �

2�
'
��34�; then we obtain: 
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Fig.1. Dependence of the functions  Χ�%� and Υ�%� 

versus the dimensionless parameter %. 

 

In Eq.(4) Alfven current �:�. � 1.7 · 10� A. For high 
emittance and small momentum spread  % ( 1; taking 
into account that Υ�0� � 1 and Χ�0� � */4 we find: 
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Let us consider a numerical example for HESR: �
��� � 100 m, transverse electron temperature ���	 � 0.2 
eV, longitudinal electron temperature ��� � 0.001 eV, 
ion beam emittance ; � 10�8 m. Under these conditions 
we obtain  ��.. � 1.6 · 10�8 m, 1���.. � 8.86 · 10��, %���, 4� � ;.;;=��.�>�·�;��'����

��;.8�=�'(�� . A dependence of cooling 

rates versus 4 for HESR (; � 10�8 and  �� � 10��)  is 
plotted at Fig. 2. 

 

Target 

Transverse heating 

The emittance growth rate due to Coulomb scattering 
on the target is defined by  

�&
�� � �7 � ��� 0�

0�'�(�� @�
A� >;  (7) 

Here the target width �� (measured in g/cm2) is the 
target density � multiplied the target x thickness,  � is the 
radiation length (for hydrogen  � �58 g/cm2), ��=15 

MeV, >; � '

�  is the number of particle crossings per 

second. If the target length ∆@̃  is given in cm-2, then  �� � 2 · ∆@̃/B: (here B: � 6 · 10�B is Avogadro 
number). For a target thickness areal density 4 · 10�=cm-2 
the target width �� � 1.3 · 10�C g/cm2 

Longitudinal heating 

The maximum energy of the delta-electrons reads  �D4� � �0�'�(�
���(��

��
����

��
�� and the average energy losses per 

one target crossing are given by D; �0.1534 E�
�'� ��[MeV]. Let us assume that average energy 

losses are compensated (for example, by use of induction 
coil). Then the growth rate of the squared energy 
deviations per sec is described by the following 
expression 8�Δ���9 � D;�D4� G1 H '�

� I  (8) 

From kinematics we have 
F�
� � F0

0�'�( γ, and then we 

obtain the final result: 
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Fig.2. Dependence of cooling rates  36 and 37  (in 
logarithmic scale) versus the relativistic parameter 4 for � � 10�8� · 67 and  �� � 8∆�

� 9 � 10��. 
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IBS heating 
If the transverse ion beam temperature is much larger 

than the longitudinal one (
H

�I'�J J ���
( ��), than the IBS 

heating rate of the longitudinal momentum is defined by 
the following approximate equation [3]:  

������
�� � K����

&�/�   (10) 

This expression is valid for a coasting relativistic beam 

(4� J 1). Here Λ6�� � √3
���L5����
�(�'�$I'�J�., where the averaged 

beta-function  8��9 � L/>. The emittance growth rate due 
to IBS ��&

���2�M � 4�Κ K����
&�/�  (10) 

Here constant Κ � �
�

R
O NPQ��QR�S

�'��� O, where sign P Q means 

averaging over the ring, D is the ring dispersion function 
and  RS � ��RT U %�R, (here %� is the  Twiss parameter of 
the lattice). 

Equilibrium conditions 
Taking into account all effects (electron cooling, target 

heating and IBS) we can write the following differential 
equations for the evolution of the beam parameters: 
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For equilibrium conditions the derivatives in the left 
hand side are equal to zero; substituting α we obtain: 
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Dividing the second equation by the first one we find: ����� � \���2���/��� U ����/1���..�� (13) 

where  \��� � 3
�

&
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. Eq. (13) can 

be reduced to the quadratic equation by substituting the 
variable � � �����/\���. Solving this quadratic equation 
relative the x we obtain the final solution for the 
momentum spread: �� � 2\��� �$���/��//��

�   (14) 

where ] � � '
1�����

��\���. As can be seen the equilibrium 

momentum does not depend on the electron cooling rate, 
which can be found in the first expression of  Eq. (14).  
Using Eq. (7) we obtain that the necessary electron 
current is given by  �� � �:�.

�1�������'(�4�

��.5�����
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Application to HESR 
The list of parameters is summarized in Table 1. The 

parameters correspond to the one of the last options of the 
HESR lattice designed by Yu. Senichev [5]. 

Table 1. Parameters of the ring, ECS and target  
Ring circumference (m) 570 

Betatron tune (>� � >�� 9.3 

Number of ions per ring 10�� 

Coulomb logarithm for ECS( �

���� 5 

Coulomb logarithm for IBS (�
��) 20 

Transverse beam emittance (m*rad) 10�8 

Target thickness (cm-2) 4
· 10�= 

Beta-function in the target (m) 1 

Beta-function in the ECS (m) 100 

Radius of the electron beam in ECS (mm)  15 

Length of the cooling  section (m) 24 

Longitudinal temperature of the electron beam 

(eV) 

0.001 

Transverse temperature of the electron beam 

(eV) 

0.2 

Parameter Κ (m) 1.334 

The dependencies ���4� and ���4�, corresponding to 
these parameters, are plotted, correspondingly, on Figs. 3, 
4. 
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Fig.3. Dependence of r.m.s. momentum spread versus 
relativistic factor 4.  
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Fig. 4. Dependence of the electron current versus 

relativistic factor 4 . 

Conclusion 
Let us formulate the main results: 

• In the in HESR the non-magnetized cooling 
gives too large  momentum spread for the 
beams with high emittance.  

• The beam momentum spread can be decreased 
by decrease of the required emittance (at 
present at  FZ-IKP, Juelich the it is developed 
new pellet target with low angular 
divergence). However decrease of the 
emittance results in enlargement of the cooling 
electron current. 

• Let us underline that the results weakly 
depend on the beam intensity since the IBS is 
small due to large beam emittance. 

• In this operation mode (large emittance and 
non-magnetized cooling) the magnetic field in 
the ECS should be designed taking into 
account the considerations of the electron 
beam transport and providing stability of the 
dipole oscillations of coupled electron and ion 
beams (see [6,7]). 

• In conclusion we would like to underline that 
this remark does not pretend to be the final 
solution; it’s only a contribution in this long 
discussion. 

• These results, of course, can be used for 
analysis of dynamics in other similar storage 
ring. 
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