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Abstract 
The well-known betatron function parameterization in 

the beam optical computations provides an emittance 
independent representation of the properties of a beam 
transport system. The acceleration effects lead to 
nonsymplecticity of the transfer matrix. The error analysis 
of matrix presentation in the different phase spaces has 
been carried out. The coupling transformations of 
betatron functions for the studied phase spaces are 
presented.  

INTRODUCTION 
The traditional betatron functions 

2, , (1 ) /β α γ α β= +  and μ  (the betatron phase 

advance) are widely used to design the beam transport 
systems without acceleration [1]. They permit to decouple 
the problem of matching the characteristics of the injected 
beam to the acceptance of a transport system. However, 
the application of standard symplectic matrix mapping 
becomes unreliable when the acceleration effects are 
included. This effect depends from the choice of a phase 
space to design the beam transport system. Mainly this 
problem is important for the linear particle accelerators, 
where the accelerating parts are larger then parts without 
acceleration.  

Formally, the single particle motion is described in a 
6 – dimensional phase space. For simplicity we will 
restrict consideration to decoupled nondispersive beam 
transport systems, where the single particle dynamics for 
any direction is presented by 2 2× matrix. Therefore 
further only one transverse direction will be under study. 

GENERAL FORMALISM 
On the whole for any phase space the linear particle 

dynamics from longitudinal point 1s  to 2s  of a transport 

system may be described by matrix 

               ( ) 11 12
, , 1 2

21 22

,x x

m m
M M s s

m mς ς
ς

⎛ ⎞≡ = ⎜ ⎟
⎝ ⎠

   ,          (1) 

where x  is the transverse coordinate and ς  is the second 

phase space coordinate. In general the determinant of (1) 
               , 11 22 12 21det ( )xD M m m m mς ς ς= = −                

(2) 
may be not equal unity. In this case the transformation (1) 
will be nonsymplectic and beam emittance [1] will be not 
conserved. At position s  in a transport line all beam 
particles lie within the ellipse [1] 

         2 2( ) 2 ( ) ( ) ( )s x s x s sς ς ς ςγ α ς β ς ε+ + =     ,       (3) 

where ( )sςε  is the beam emittance. 

     According (1) the phase space particle dynamics 
between positions 1s  and 2s  is described by 

2 2 1 1
, ,

2 2 1 1

( ) ( )

( ) ( )x x

x x s x s x
M M

s sς ςς ς ς ς
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≡ = ⋅ ≡ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

      .       

(4) 
Applying (3) for two mentioned above points and 
introducing the definitions 
    1 1( )sς ξε ε= , 2 2( )sς ςε ε= , 1( ) ( )s K sς ς

ςε ε= ⋅   ,          (5) 

the following expressions for the betatron function 
propagation may be derived 
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    ,                       (6) 

where 2( )K K sς ς≡ , and matrix Tς has the standard form 

like for a beam transport system without acceleration [1]:  

           
11 22 12 21 11 21 12 22

2 2
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T m m m m

m m m m
ς
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+ − −⎛ ⎞
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    . 

From (6) it is possible to get the followed coupling 
coefficient for the betatron functions at different points of 
a beam transport system 

                      ( )
2

2 2
2 2 2 1 1 12

( ) ( )
K

D
ςς ς ς ς ς ς

ς

β γ α β γ α− = ⋅ −  .       (7) 

Whence it follows that for the arbitrary chosen phase 
space coordinates the next condition may be valid 

                ( )2
( ) ( ) ( ) ( ) 1F s s s sς ς ς

ς β γ α≡ ⋅ − ≠     .       (8) 

CANONICAL PHASE SPACE 
The canonical-conjugated variables are the coordinate 

and momentum ( , )x p  [1] for any transverse direction. 

For this phase space the beam emittance is an invariant 
[1]. Further the modified momentum is used: 

                       ;x x xp v cβ γ β= =    ,               (9) 

where xv  is a transverse particle velocity; с  is the light 

velocity; γ  is a particle relativistic factor. In the formulas 

from previous section replacing pς →  the following 

equalities are valid for the canonical phase space [1]: 
             1pD ≡  ; 1 2

p pε ε=  ;  1pK ≡ ;  ( ) 1pF s ≡     .     (10) 

The matrix ,x pM  is symplectic and the beam emittance is 

invariant for the beam phase space motion [1]. Defining 
the betatron phase advance between positions 1s and 2s  as    
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                        2 1( ) ( )p s sμ μ μΔ = −            ,              

(11) 
the elements of matrix ,x pM  may be calculated [2]: 

     ( )2
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m
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= ⋅ Δ + Δ  

     12 1 2 sinp p p
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     ( )1
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And if the matrix elements are calculated by any way, the 
betatron function propagation (6) will be 
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and                   12
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p
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−
         .          (14) 

The beam phase space ellipse (3) will be governed by  
   2 2( ) 2 ( ) ( ) ( )p p p ps x s xp s p s constγ α β ε+ + = ≡       

(15) 
The above formalism is valid for Hamiltonian systems 
including both a beam transport system without 
acceleration and with acceleration [1]. However the exact 
matrix description in the canonical phase space ( , )x p  for 

the accelerating beam transport systems is difficult and 
has not a wide practice application.  

NONCANONICAL PHASE SPACES 

Standard Phase Space 
 The traditional representation of the beam transport 

systems is based on a noncanonical phase space ( , ')x x , 

where the angular divergence 'x is determined as 
                          0'( ) ( ) / ( )x s p s p s=        ,                     

(16) 
here ( )p s  is the modified canonical momentum (9) and 

0 ( )p s  is the modified longitudinal momentum of the 

synchronous particle at a point of observation. Using (16) 
the coupling relations between the matrices ,x pM  and 

, 'x xM  are:   

         '
11 11
x pm m= ,              '

12 12 0 1( )x pm m p s= ,  

         '
21 21 0 2( )x pm m p s= , '

22 22 0 1 0 2( ) ( )x pm m p s p s=   . 

Taking into account (10) it follows that 

  0 1
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p s
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p s
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p s
K

p s
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(17) 
From (17) it results that: 

• matrix , 'x xM  is nonsymplectic and its determinant is 

reduced  in an accelerating transport system, hence it 
does not admit a representation by (12)÷(14); 

• the beam emittance ' ( )x sε  is ”adiabatically damped” 

along a transport system with acceleration; 
• the  coupling  coefficient  (8)  ' ( )xF s   is  the 

 constant 
      of motion. 
If the matrix elements are calculated by any way, the 
betatron function propagation (6) will be 

                             

' '
2 1

' '
2 ' 1

'' '
2 1

1
x x

x x
x

xx x

T
D

α α
β β
γ γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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(18) 
To calculate the betatron phase advance (11) the general 
definition [1] may be used 

                                  
2

1

' ' ( )

s

x x
s

ds

s
μ

β
Δ = ∫           .                

(19) 
The beam phase space ellipse (3) in the phase space 
studied will be governed by 
 ' 2 ' ' 2 '

' 1( ) 2 ( ) ' ( ) ' ( ) ( )x x x x
xs x s xx s x K s sγ α β ε+ + = ⋅ .    (20) 

Comparing (20) and (15) the following betatron function 
coupling for the phase spaces ( , ')x x  and ( , )x p  is 

      '
0( ) ( ) ( )x ps s p sβ β=   ;   ' ( ) ( )x ps sα α=   ;             (21) 

      '
0( ) ( ) ( )x ps s p sγ γ=   ;   '

0( ) ( )x ps p sε ε=   . 

From (10), (17) and (21) it follows that the coupling 
coefficient invariant is 
                               ' ( ) ( ) 1x pF s F s= ≡       .                   (22) 

Basing on the geometric characteristics of a phase ellipse 
[1], the real beam parameters at the fixed longitudinal 
point of a transport system are: 

spot size        ' '
max ( ) ( ) ( ) ( )x x p px s s s sβ ε β ε= ≡ ;  

divergence    ' '
max' ( ) ( ) ( ) ( )x x p px s s s sγ ε γ ε= ≡ . 

Because of the betatron phase advance must be 
independent of the presentation chosen to describe the 
beam motion [2] the followed expression is valid  
                                       'x pμ μΔ = Δ      .                      (23) 

    The presented matrix formalism permits to simulate 
exactly the betatron function propagation in a beam 
transport system with acceleration if the matrix , 'x xM  was 

qualitatively determined. For example, the accelerating 
element models from [3] may be used. 
     Note, the equation (18) is coincided with the results of 
paper [2], but the algorithm presented in this paragraph is 
simpler and demands less number of the calculations.   

Modified Phase Space 
To study a beam transport system with acceleration the 

modified phase space ( , )x v , where xv v≡  is the 

transverse particle velocity (9), was proposed. The 
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independent variable is the time. Further the time markers 

1t  and 2t will be the moments when the synchronous 

particle traverses the longitudinal points 1s  and 2s .  

Applying the previous section approach it follows: 

1 2( ) ( )vD t tγ γ= , 1 2( ) ( )vK t tγ γ= , ( )vF t const≡ ,     (24) 

where 1( )tγ  and 2( )tγ  are the relativistic factors of the 

synchronous particle at the moments 1t  and 2t  

respectively. From (24) it results that: 
• matrix ,x vM  is nonsymplectic and its determinant is 

reduced  in an accelerating transport system, hence it 
does not admit a representation by (12)÷(14); 

• '( ) ( )v xD t D s>  and '( ) ( )v xK t K s>  for t s↔ ; 

• the beam emittance ( )v tε is ”adiabatically damped” 

along a transport system with acceleration; 
• the coupling coefficient (8) ( )vF t  is the constant of 

motion. 
The coupling relations between the matrices ,x pM  and 

,x vM  are:   

         11 11
v pm m= ,            12 12 1( )v pm m tγ=  

         21 21 2( )v pm m tγ= , 22 22 1 2( ) ( )v pm m t tγ γ=    . 

The betatron function propagation is governed by 

                      
2 1

2 1

2 1

1
v v

v v
v

vv v

T
D

α α
β β
γ γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

        .                     (25) 

The betatron function parameterization (3) in the phase 
space ( , )x v is 

       2 2
1( ) 2 ( ) ( ) ( ) ( )v v v v

vt x t xv t v K t tγ α β ε+ + = ⋅  .     (26) 

The betatron function coupling for the phase spaces 
( , )x v and ( , )x p  is:  

   ( ) ( ) / ( )p vs t c tβ β γ= ⋅   ;  ( ) ( )p vs tα α=  

   ( ) ( ) ( ) /p vs t t cγ γ γ= ⋅    ;   ( ) / ( )v pt c tε ε γ= ⋅    .       (27)                

Therefore the coupling coefficient invariant is 
                             ( ) ( ) 1v pF t F s= ≡     .                         (28) 

There is simple equality for the betatron phase advance 
(11) in the ( , )x v  and ( , ')x x  phase spaces: 

            
2 2

1 1

' ' ( ) ( )

s t

x vx v
s t

ds dt

s t
μ μ

β β
Δ = = = Δ∫ ∫    .                   (29) 

The real beam parameters at fixed time moment 
t corresponding to the longitudinal point s  of a transport 
system are: 

  max max( ) ( ) ( ) ( ) ( )v v p px t t t s x sβ ε β ε= ≡ = ;  

 max max' ( ) ( ) ( ) ( ) ' ( )v v p px t t t s x sγ ε γ ε= ≡ = . 

PRACTICAL APPLICATION 
Assuming the qualified presentation of matrices ,x pM , 

, 'x xM  and ,x vM , the algorithms presented above permit to 

get the reliable results of the desired betatron function 

propagation in a designed beam transport system even 
with the accelerating elements. In practice the 
accelerating elements are presented by the simplified 
models. For example, the proposed method [2] to 
propagate the betatron functions is complicated and used 
the “poor” rf-resonator model. In this case the calculation 
errors may be undesirable large. The widespread and 
more simple methods (for example [3]) exist to constrain 
a transfer matrix *

, 'x xM  or *
,x vM  for a noncanonical phase 

space with the determinants  
     *

' 1xD =  and *
' ( ) 1xF s =    ; * 1vD =  and *( ) 1vF t =  .    

(30) 
The basic elements of a linear accelerator structure are 

the periodic parts with acceleration and transverse 
focusing (main parts), and matching sections for the 
different accelerator periodic parts. As a rule the beam 
energy gain both for the matching parts and main parts is 
insignificant compared with the beam energy. Therefore 
an application of the models with (30) may be effective in 
spite of the violations for some conditions (17) or (24).  

On the base of the modified phase space the program 
complex was developed to design and simulate both the 
matching and periodic parts of the ion linear accelerators 
using the conditions (30). This complex was applied to 
match some periodic parts of the INR Linac [4]. In the 
Table 1 some parameters and determinants of the models 
are presented for two first matching parts of the INR 
Linac:  

 

Table 1: Noncanonical Determinants 
№ Input 

energy, MeV 
Output 

energy, MeV 'xD  vD  

1 100.1 113.3 0.937 0.987 
2 139.3 158.6 0.933 0.982 

 

Obviously to use for the simulation the modified phase 
space with (30) is more reliable from point of view to 
reduce the expected errors. For the periodic parts of the 
INR Linac the beam energy gain is ~3.7 MeV per period. 
It means that in the phase space ( , )x v  the beam transfer 

matrices are very close to condition (30), which leads to 
possibility to use the mathematical formalism (12)÷ (14).  

CONCLUSIONS 
The betatron function matrix formalism for the 

accelerating transport systems has been studied both for 
the canonical and noncanonical phase spaces. The exact 
formulas for the betatron function propagation are 
presented for all phase spaces studied. It was shown that 
the modeling of an ion accelerator in the phase space 
( , )x v  does not create the additional problems for the 

matrix description of the standard elements of a beam 
transport system. Moreover for the low and medium beam 
energy ranges it permits to get a reliable solution for the 
betatron function propagation in an accelerating transport 
system by using the standard canonical matrix formalism.  
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