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Abstract 
The wake field excited by a relativistic charged bunch 

in a periodic waveguide can be expressed as a spatial 
harmonic Floquet series. Usually spatial harmonics of the 
wake force synchronous with the bunch are of interest due 
to their action on particles that results in the well known 
beam loading and beam break up effects in rf structures. 
However, an alternating transverse wake force which 
consists of nonsynchronous harmonics can give rise to 
undulating the particles with alternating transverse 
velocity that can result in no less important effect such as 
the wake field undulator radiation [1]. Therefore there 
exist an interest in developing of methods of calculation 
of alternating wake forces in a periodic rf structures. In 
this work a perturbation method for calculation of wake 
field in rectangular periodic waveguides was considered. 
A possible usage of the wake field excited by an electron 
bunch passing through a sub-millimeter planar periodic 
waveguide for both ultra-high gradient acceleration and 
generation of the hard wake field undulator radiation is 
discussed. 

INTRODUCTION 
The wake field (WF) induced by a relativistic charge 

particle bunch in a periodic corrugated waveguide and the 
corresponding wake force can be expanded into Floquet 
series in spatial harmonics. The spatial harmonics 
synchronous with the bunch usually are of interest due to 
their constant action on the particles that results in the 
well-known beam loading and beam breakup instability 
effects in the rf structures.  

However, the alternating transverse wake force which 
consists of the nonsynchronous harmonics can give rise to 
undulating off–axis particles that should result in no less 
important phenomena such as the wake field undulator 
radiation (WFUR) [1,2], and the pondermotive focusing. 
Therefore there exists an interest in developing the such rf 
structures in which the alternating transverse wake force 
would be appreciably more than the longitudinal 
synchronous wake force. These properties are inherent for 
the rf waveguides with periodic perturbed walls. Just for 
such periodic perturbed axially symmetrical waveguides 
the authors [3] have developed a perturbation method for 
calculating wake fields. As follows from this method 
amplitudes of nonsynchronous harmonics of the wake 
field turn out to be of the first order of smallness whereas 
synchronous ones appear in the second order of 
smallness. However, the round structures with sub-
millimeter sizes, which need for generation of the hard 
WFUR [2], are difficult to construct and 
very

expensive. So, in connection with development of the 
micromechanic technology of fabrication of planar sub-
millimeter structures, the analytical methods on 
calculating wake fields in the rectangular periodic 
waveguides are a relevant topic. In Ref. [4] the approach 
[3] has been generalized and expanded on the rectangular 
waveguides. The goal of this paper consists in calculation 
of alternating wake forces by the method [4] in a 
rectangular waveguide with periodic perturbed walls, and 
study a possible usage of the wake fields excited by an 
electron bunch passing through a sub-millimeter planar 
periodic waveguide for generation of the hard wake field 
undulator radiation is discussed. 

CALCULATION OF WAKE FORCES 
Let a bunch of N ultrarelativistic electrons with 
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moves along a planar waveguide with weakly-corrugated 
metallic both upper and lower surfaces. Here е is the 
electron charge; x, у are transverse coordinates; z is a 
longitudinal coordinate; x0 and y0 are the transverse 
coordinates of the charge center; v is velocity of the 
electrons; t is a time; σx, σy, σz are the root-mean-square 
bunch dimensions. The wake field and the corresponding 
wake force have to be found. We will apply the method of 
Green’s functions, and so, firstly find the wake fields 
excited by a point bunch, the current density of which 
may be written as 
 ( ) ( ) ( )0 0 vx y zj =0,   j =0,   j eN x x y y t zδ δ δ= − − − , (2) 

Consider a planar periodic waveguide sketched in Fig.1. 

 
Figure 1: A rectangular waveguide with the plane yz; 
x1,2=±b(z) are the surface contours, D is the period. 

The periodic shape of the corrugated surface can be 
represented by a Fourier series expansion  
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where ε is a small parameter (0<ε <<1), b0 is the average 
half-distance between the upper and lower surfaces. 
Expanding the electromagnetic fields in the Fourier’s 
integral over frequencies ω and Floquet series in spatial ___________________________________________  
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harmonics, the spatial harmonics of the transverse wake 
force may be found from the Maxwell equations as:  
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where we have introduced the following definitions:  
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is the velocity of light. The harmonics of the longitudinal 
field components satisfy the wave equations  
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where 2 2 2 2x y⊥Δ = ∂ ∂ + ∂ ∂ ; jω,p,z is a current density 

spatial harmonic of the point bunch Eq.(1)  
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Here δ0,p is the Kronecher's symbol. 
The Eqs. (6), (7) should be complemented with the 

boundary conditions for conducting walls: 
 

, , , , 0.
2 2z y

w w
E x y z H x y z

⎛ ⎞ ⎛ ⎞= ± = = ± =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (9) 

A tangential component of electric field Eτ and a normal 
component of magnetic field Hn are expressed in terms of 
Ex, Ez і Hx, Hz, accordingly: 
 ( ) ( )1,2 1,2, , sin , , cos 0x zE x y z E x y zα α± + = , (11) 

 ( ) ( )1,2 1,2, , cos , , sin 0x zH x y z H x y zα α± − = , (12) 

where ( )tg db z dzα = . 

 
Figure 2: The boundary conditions.  

Expanding the fields on the surfaces x1,2 in terms of a 
Taylor’s series close to the imaginary planes x=±b0 (see 
Figs.1) and taking into account Eq.(2), we get new 
boundary conditions on the planes x=±b0 (see [4]). Then 
we will solve Eqs.(6, 7) by a successive approximation 
method expanding the fields in terms of the powers of ε:  
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where ( ) ( )
, , , ,,n n n
p z p zE Hω ω ε∝ . 

Omitting suitable calculations, recovering the time 
dependence of the fields by the inverse Fourier transform, 
and using the wake forces for a point charge as Green’s 
functions, we obtain the wake force. The pth spatial 
harmonic (where p≠0) of the transverse components is of 
the first order of ε  
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(15) 
where τ=t−z/v, ωm,p,n are the eigenfrequencies 
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It should be noted that there is essential anisotropy of 
transverse components of the alternative wake forces. 
Thus, the у-component Fp,y ∼1/γ2 is strongly depressed 
comparatively with Fp,x., and can be neglected.  

Electron energy losses connected with wakfield 
excitation are defined the synchronous harmonic (p=0) of 
longitudinal component of electric field which appears in 
the series (13) in the second order of smallness 
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WAKE FORCE CHARACTERISTICS 
Let us consider the electron bunch with Q=eN=1 nC 

which moves along the planar periodic waveguide with 
the surface contours b(z)=b0[1+ε cos(2πz/D)] (where 
b0 = D , w = 10b0, ε = 0.1) as it is represented in Fig.3.  
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Figure 3: The position of an electron bunch in the 

waveguide.  

As it has been shown in Ref. [4] the distribution of 
wake field in a cross-section has shape of a surface wave. 
So, to obtain high alternating wake force as well as high 
gradient acceleration the bunch should travel off axis of 
the sub-millimeter waveguide at the maximally possible 
distance xmax from the axis  

max 0 01 2 xx b bε σ= − −   (17) 

The second requirement for generating the wake field 
undulator radiation consists in forming the maximum of 
alternating transverse wake force at the pick of charge 
density. The needed wake field distribution along the 
bunch can be obtained in a case of a long bunch, D≤ σz. 
In Fig.4 it is presented the distribution of the wake force 
spatial harmonics (F1,x, and F0,z) along the bunch with 
σz=D =100 μm, σx=σy=10 μm at x0/b0=0.7, у0=0.  

 
Figure 4: The WF distribution along the bunch. The lines: 

red is F0,z, blue is-⎪F1,x⎪, dash is the charge density. 

From Fig.4 we can see that the wake fields localize 
within the bunch. The first half-bunch loses energy in the 
decelerating longitudinal field while the second one 
adsorbs it fully without storing the radiation in the 
waveguide after the bunch. The absolute value of the 
transverse component of the alternating wake force F1,x 
reaches the maximum at the charge density maximum 
where the longitudinal component of the synchronous 
harmonic of the electric field F0,z changes its sign. The 
wake field “spot” moves with the bunch velocity. In the 
absence of storing wake fields in the waveguide, and due 
to the femtosecond range duration of the wake field 
“spot” δτ∼σz/v, the breakdown field of metallic surface 
should be very high.  

In the next Fig.5 it is demonstrated what magnitudes of 
wake fields may be reached by scaling down the beam 
sizes to the frontier values, σz=D=20 μm, σx=σy=1 μm, at 
x0/b0=0.8 which satisfy Eq.(17). We can see that 
⏐F0,z⏐≤ 3GeV/m and ⏐F1,x⏐≤ 20GeV/m for Q=1nC.  

 
Figure 5: The WF distribution along the bunch. The lines: 

red is F0,z, blue is-⎪F1,x⎪, dash is the charge density. 

The Fig.6 shows what equivalent undulator magnetic field 
corresponds the first harmonic of the alternating 
transverse wake force ⎪F1,x⎪. 

 
Figure 6: The equivalent undulator magnetic field. 

SUMMARY 
By perturbation method we calculated wake forces 

induced by an ultrarelativistic electron bunch in 
rectangular waveguides with periodically perturbed walls, 
and obtained the following main results: 
• The transverse components of the alternating wake 
force in a planar waveguide are strongly anisotropic. 
• For a long bunch the wake field localizes within the 
bunch without storing the radiation into the waveguide.  
• The transverse components of the alternating wake 
force are maximal at the maximum of the charge density. 
• The wake field excited by an electron bunch passing 

through the sub-millimeter planar periodic waveguide 
may be used for both a high gradient acceleration and 
generation of the wake field undulator radiation.  
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