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Abstract 
Ion superconducting linac is based on an array of short 

identical niobium cavities. By specific phasing of the RF 
cavities one can provide a stable particle motion in the 
whole accelerator. The longitudinal and transverse ion 
beam dynamics are studied in this linac. The equation of 
motion in the Hamiltonian form is devised by the smooth 
approximation. The focusing methods by the solenoid 
field and RF field are studied. The results of this 
investigation are compared with the matrix calculation of 
ion beam dynamics in superconducting linac. 

INTRODUCTION 
Ion superconducting linac is usually based on the 

superconducting (SC) interdigital cavities. This linac 
consists of the niobium cavities which can provide 
typically 1 MV of accelerating potential per cavity. Such 
structures can be used for ion acceleration with different 
mass-charge ratio in the low energy region [1]. The 
geometrical velocity βG of the RF wave is constant for 
cavities. The identical cavities operate at the some initial 
drive phase φ. By controlling the driven phase of the 
accelerating structure and the distance between the 
cavities, the beam can be both longitudinally stable and 
accelerated in the whole system. 

Beam focusing can be provided with help of SC 
solenoid lenses, following each cavity and with help of 
special RF fields. A schematic plot of one period of the 
accelerator structure is shown in Fig. 1. The low-charge-
state beams and the low velocity require stronger 
transverse focusing than one is used in existing SC ion 
linac. 

In this paper methods of the beam dynamics 
investigation are compared for low ion velocities and for 
the charge-to-mass ratio Z/A = 1/66. This comparison can 
be demonstrated with an example a post-accelerator of 
radioactive ion beams (RIB) linac, where beam velocity 
increases from β = 0.01 to β = 0.06 [1]. 

PARTICLE MOTION IN SC LINAC 
The general axisymmetric equations of motion for ion 

moving inside an accelerator can be written as 
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In every cavity the acceleration RF field of periodic H-
cavity is represented as an expansion in spatial harmonics 
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where E0 is amplitude of RF field at the axis (E0 ≠ 0 if     
–Lr/2 < z–zi < Lr/2), hn = π/D + 2πn/D, n = 0, 1, 2, …, 
Di = βGλ/2 is the period length of the cavity, Lr is the 
cavity length, zi is the coordinate of the i-th cavity center. 
I0, I1 are modified Bessel function. In our case the 
reference particle velocity βc and the geometrical velocity 
βG are closely in each class of the identical cavities. 
Retaining in (2) only zeroth harmonic we can use the 
traveling wave system. In this system ωt can be replaced 
by h0(z–zi) + φ0i, where φ0i is the RF phase when the 
reference particle traverses the cavity center. In equation 
(1) the value Aφ is the azimuthal vector-potential of the 
magnetic field in every solenoid (B = rotA). 

 

Figure 1: Layout of structure period. 

Superconducting cavities provide high accelerating 
gradient in linear accelerating. Together with the higher 
accelerating rate in SC linac the defocusing factor is much 
higher in comparison to the normal conducting linear 
accelerator. The beam focusing can be provided by SC 
solenoids which follow each the cavity [1]. The 
conditions of longitudinal and transverse beam stabilities 
for the structure consisting from the periodic sequence of 
the cavities and solenoids were studied early using 
transfer matrix calculation [2]. In SC linac design, it is 
very important to know the bucket size since it relates to 
the longitudinal RF focusing. But the linac longitudinal 
acceptance cannot be obtained by matrix method because 
of the assumption that the particles have small 
longitudinal oscillation amplitude. In order to investigate 
the nonlinear ion beam dynamics in such accelerated 
structure and to calculate the longitudinal and transverse 
acceptances it can be used smooth approximation [3,4]. In 
this paper, three dimensional equation of motion for ion 
beam in the Hamiltonian form is derived in the smooth 
approximation for superconducting linac. ____________________________________________ 
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In periodical structure, which was shown in Fig.1., RF 
field can be expanded into a Fourier series as 
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Here )ψφcos(00, += cz Sf , )ψφsin(00, +−= cr Sf , 

( ) ( )ψφcos1, +−= +
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−+± ±= nnn SST , Sn
± = sin(Yn

±)/Yn
±, Yn

± = (kc ± kn)Lr/2. 

In this expressions: E = 2U/Lr, U is the cavity voltage 
amplitude; kn = 2πn/L, n = 0, 1, 2, …; kc is slipping factor, 
kc = (2π/λ)(1/βc – 1/βG). In the coefficients fn

c,s the phase 
relative to the reference particle ψ defined by        
ψ = ω(t – tc), tc is the flight time of the reference particle. 

In the simple case the vector-potential of the magnetic 
field Aφ = Br/2 can be approximated by the step function 
for every solenoid. If Ls is effective solenoid length and L 
is a lattice period, the external solenoid magnetic field can 
be represented as an expansion into spatial harmonics too. 

BEAM DYNAMICS IN SMOOTH 
APPROXIMATION 

Let us consider particle acceleration in the 
polyharmonic fields of the cavities (3) and solenoids. The 
ion dynamics in such periodic structure is complicated. 
The particles trajectories can be presented as a sum of the 
slowly term and a fast oscillation term with a period L. 
The normalized particle velocity deviation with respect to 
the reference particle velocity, Δβ, can be represented as a 
sum of a slow motion term and a fast oscillation term too. 

Following Ref. [5] one can apply averaging over the 
fast oscillations and obtain the phase (ψ) and radial 
(ρ = h0r) motion equations in smooth approximation. 
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where Ueff = U0 + U1 + U2 is effective potential function. 
We use the following designations: 
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Here 
332 γβλ2 ggmcA

eZULπα =  is interaction parameter, 

b = (eZBL/2Amcβcγc)
2 is focusing coefficient, Xn = πnLs/L, 
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In this expression for Ueff we take into account the 
coherent oscillations of bunches and the effective 
potential function describe slowly oscillations in the 
reference particle frame. Earlier, in [5] the effective 
potential function was found in the frame where averaged 

velocity of reference particle, 0β =c . Now, it is 

interesting to compare these two cases and matrix 
method, which was used in [2]. 

The effective potential Ueff provides the full description 
of the ion dynamics in the smooth one-particle 
approximation. In our case the analysis of the effective 
potential (5) makes it possible to study the condition at 
which the radial and phase stability of the beam is 
achieved. We begin our analysis with expanding Ueff in 
the vicinity of its minimum (ψ = 0, ρ = 0): 
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The expansion coefficients here depend on the 
parameter of interaction α, the values of Lr/L, Ls/L and the 
slipping factor kc. The radial and phase stability of the 
beam will be provided when Ωz

2 > 0, Ωr
2 > 0, where Ωz, 

Ωr are dimensionless frequencies of small longitudinal 
and transverse oscillations. 

In the simplest case when the phase velocity βG 
changes from cavity to cavity and kc = 0 
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Here the value of χ depends on the ratio of Lr/L. For 
some of Lr/L the value of χ is listed in Table 1. 

Table 1: The value of χ for some ratio of Lr/L 

Lr/L 0 1/4 1/2 1 
χ 1/3 3/16 1/12 0 

In single wave approximation when Lr/L = 1 and fast 
oscillation terms are absent, the value of χ = 0. In this 
case, the dimensionless frequencies Ωz, Ωr are equal to the 
longitudinal and transverse phase advances per a cavity μz 
and μr which were founded by transfer matrix calculation. 
But the conditions of focusing are changed if the 
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parameter α is large (βc is small) and the influenced of fast 
oscillations is greatly. The functions Ωz(β) and Ωr(β) for 
different values of β are shown in Fig 2. In case, when the 
effective potential function was found in the reference 
particle frame, the dimensionless frequencies Ωz, Ωr 
(green lines) are close to the phase advances per a period 
μz and μr (red lines). In this case the smooth 
approximation gives very good agreement with the 
transfer matrix calculation. In the other case when 

effective potential was found in the frame, where 0β =c , 

it appears the sharp distraction for Ωz (blue line) if 
β < 0.02. Therefore first variant of smoothing will be used 
for analysis of 3D dynamics. 

This approximation has been applied to find the 
longitudinal acceptance. Fig. 3 shows the phase 
acceptance (thin line) and maximum energy width inside 
the RF bucket (thick line) for Lr/L = 1/4, φc = –20° and 
different β. In case, when the effective potential function 
was found in the reference particle frame the phase 
acceptance and maximum energy width shown by red 
lines, and when higher harmonics is absent (single wave 
approximation) by blue lines. The influence of the fast 
oscillations is negligibly for maximum energy width. 

 

Figure 2: The frequencies of longitudinal Ωz (dot lines) 
and transverse Ωr (solid lines) oscillations for B = 20 T. 

For the charge-to-mass ratio Z/A = 1/66, φc > –20°, 
β = 0.01 and the transverse emittance Vr = 0.1π·mm·mrad 
the beam focusing can be realized for the solenoid field 
above B ~ 20 T. Smooth approximation gives very good 
agreement with the transfer-matrix calculation. 

 

Figure 3: The phase acceptance (Φ) and maximum energy 
width (Δγ) within bunch for different β. 

APF AND SOLENOID FOCUSING 
The smooth approximation has been applied to the 

study of alternating phase focusing (APF) in RIB linac. 
By adjusting the drive phase of the two cavities, we can 
achieve the acceleration and the focusing by less 
magnitude of magnetic field B [2]. New effective 
potential Ueff must be find for this accelerating structure. 
The analysis of the effective potential makes it possible to 
study the condition at which the phase and radial stability 
of the beam is achieved. 

 

Figure 4: The phase acceptance (Φ) and maximum energy 
width (Δγ) within bunch for different β. 

In the simplest case when a slipping factor kc = 0, 
φ1 = –30°, φ2 = 20° and ρ = 0 the longitudinal acceptance 
is shown in Fig. 4. Now the influence of the fast 
oscillations is considerable. The maximum energy width 
inside the RF bucket has minimum in β =0.017 and the 
phase acceptance decreases from 60° to 15°. The value of 
magnetic field Bmin can be reduced to 9 T in this case. 

CONCLUSION 
The methods of the focusing analysis are compared for 

low ion velocities. It is shown that the smooth 
approximation gives very good agreement with the 
transfer matrix calculation if the effective potential 
function is found in the reference particle frame. By the 
smooth approximation it is studied nonlinear ion beam 
dynamics in linac with combined focusing. The borders of 
the beam stability area can be found by smooth 
approximation. 
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