
UAL 3: ASPECT-ORIENTED APPROACH

N. Malitsky, Brookhaven National Laboratory, U.S.A.
R. Talman, Cornell University, U.S.A.

Abstract
The paper presents the next step in the evolution of the

Unified Accelerator Libraries (UAL). The existing
version is base on an object-oriented framework
addressing a broad spectrum of offline modeling
applications ranging from configurable efficient
integrators to full-scale realistic beam dynamics studies
encompassing multiple physical effects. Accumulated
experience with various projects has validated the UAL
framework and outlined its relationship with the new
aspect-oriented paradigm (AOP). As a result, the UAL3
version is designed to develop and apply the AOP
Conceptual Reference Module in the context of the
accelerator computational physics domain.

BACKGROUND
The design and operation of modern accelerators such

as nuclear colliders and synchrotron light sources requires
sophisticated, flexible and powerful modeling software.
On the one hand, the complex problems that have to be
studied require non-standard modeling techniques, such
as tracking two beams, dealing with complex alignment
tolerances for triplet assemblies, analysis of various
insertion devices, etc. On the other hand, large
accelerators are becoming international collaborative
efforts, resulting in the consolidation of various programs
in the unified environment aiming to facilitate the
development and sharing of the most effective algorithms
and approaches. Moreover, stringent parameters of
modern high-intensity machine impose new expectations
on beam dynamics studies and usually require the
combination of several physical effects and processes.

The central part of this modeling environment is an
internal representation of the accelerator system. The
accelerator is a complex device combining many elements
of different physical types with heterogeneous attributes,
all organized in a nested hierarchical structure. The
complexity of this organization prompts a variety of
project-specific views and implementations of accelerator
descriptions. Recently, the new version of the Accelerator
Description eXchange Format (ADXF [1]) was
introduced to provide a uniform, complete, and extensible
model in the definition of the accelerator state. Its
concepts are derived from experience with numerous
accelerator applications and the generalization of several
lattice formats, such as MAD/SIF, SMF, SXF, and others.
A significant feature distinguishing this model from
earlier models is its segregation of element positioning
information from position-independent element
properties, such as magnet strengths. The model is built
from five main entities (see Figure 1):

Figure1: ADXF 2.0 accelerator model.

• An accelerator is any accelerator component selected

by the user
• An accelerator component is a node in the

accelerator tree organization. There are many
different types of lattice components (e.g. dipole,
quadrupole, sector, etc). But all of them have the
same structure: name and open collection of attribute
sets. A component may have a reference to its design
component.

• An accelerator component assembly is a named
sector or composite element with a sequence of
frames with installed accelerator components and
insertions.

• An accelerator component frame is a layout of
installed component. It contains a relative position,
misalignments, and a reference to an associated
component, sector or accelerator element.

• An accelerator component attribute set is a container
of attributes relevant to the single physical effect of
feature (e.g. magnetic field, aperture, etc.)

In contrast with other approaches, this accelerator
model does not contain any application-specific attributes
and serves as a joint point among various processing
algorithms. This separation of propagating algorithms
from accelerator elements embodies the main
architectural principle of the Unified Accelerator
Libraries (UAL) environment, enabling one to apply a
variety of different simulation approaches to the same
accelerator lattice. In the present version, the element-
algorithm associations are built by the UAL propagator
framework using Accelerator Propagator Description
Format (APDF[2]). One can consider the APDF files as
compliments to the conventional MAD or ADXF lattice
input files. For example, the following APDF file
represents the original TEAPOT element-by-element
tracking engine:

<link algorithm=”TEAPOT::DriftTracker”
 types=”Default” />

<link algorithm=”TEAPOT::DriftTracker”
 types=”Marker|Drift” />

06 Particle Dynamics In Accelerators And Storage Rings,
Cooling Methods, New Methods Of Acceleration

Proceedings of RuPAC 2008, Zvenigorod, Russia

24

<link algoritm=”TEAPOT::DipoleTracker”
 types=”Sbend” />
<link algorithm=”TEAPOT::MltTracker”
 types=”Quadrupole|Sextupole|Multipole” />
<link algorithm=”TEAPOT::MltTracker”
 types=”[VH]kicker|Kicker” />
<link algorithm=”TEAPOT::RfCavityTracker”
 Types=”RfCavity” />
<link algorithm=”TEAPOT::DriftTracker”
 types=”[VH]monitor|Monitor” />

According to this description, the UAL propagator

builder associates the different MAD types of accelerator
elements (e.g. Quadrupole) with the corresponding
classes of the TEAPOT propagators (e.g.
TEAPOT::MltTracker). In the next example, the original
TEAPOT simulation model is extended with the
application-oriented class MIA::BPM that collects turn-
by-turn BPM data for the subsequent SVD analysis:
 …

<link algorithm=”MIA::BPM”
 types=”[VH]monitor|Monitor” />

As illustrated by these two examples, the APDF-based
approach promulgates the rapid development of new
applications and facilitates extensions of the original
modules. Recently, similar issues have been addressed by
the Aspect-Oriented Programming (AOP [3]) paradigm
aiming to define a formal generic approach for integrating
crosscutting extensions (concerns) into object-oriented
software. From its perspective, the connection of
propagators with accelerator elements can be considered
as the model-specific concerns which crosscut through the
entire accelerator structure. As a result, the UAL 3 aims
to explore, develop, and apply the AOP Conceptual
Reference Model [4] in the context of accelerator
modeling applications.
 The remainder of this paper is structured as follows.
Section 2 presents the object-oriented Visitor-based
solution [5] for adding crosscutting propagators to the
accelerator structure. Section 3 considers the aspect-
oriented variant based on Wu and colleagues’ procedure
[6]. Section 4 introduced the Mutable Class approach [7]
implemented in the initial version of the UAL framework.
Finally, section 5 introduces the design of the UAL 3
version based on the language-neutral implementation of
the AOP model.

VISITOR APPROACH
Hierarchical heterogeneous trees represent the natural

models of many software applications, such as the
abstract syntax tree (AST) of compiler systems, the scene
graphs of visualization toolkits, and others. Processing of
these models in the object-oriented domain is addressed
by the Visitor pattern [5]. This pattern groups the different
types of heterogeneous structure-oriented operations into
separate classes and provides a consistent mechanism for
their interchange. In the context of accelerator modeling

software, the Visitor pattern facilitates the development of
algorithm-specific scenarios by separating the different
types of processing algorithms. The corresponding
structure diagram is shown in Figure 2.

Figure 2: Diagram of the Visitor Pattern [5] in the context
of the accelerator modeling environment.

According to the diagram, traversal algorithms are
implemented with the two-dimensional collection of
classes and visitors, differentiated by traversal categories
and types of the processed objects. The visitors from the
same traversal categories are encompassed into new
classes, Tracker or Mapper, for processing the entire
model structure. Each element of the model structure is
algorithm-free and has a general accept method for
passing itself to the appropriate visitor according to the
double-dispatch mechanism. The Visitor pattern however
introduces a serious limitation. It freezes existing class
hierarchies and prevents any extensions of the processed
tree structure. In particular, adding a new type of the
accelerator element would require editing all visitor
classes.

There have been several attempts aimed to resolve the
problem of the original Visitor pattern. Within the object-
oriented domain, the Acyclic Visitor pattern [8] suggested
the most consistent alternative approach for breaking the
dependency cycle with multiple inheritance. Inheritance
however is a static mechanism and results in strong
coupling between components.

ASPECT-ORIENTED APPROACH
 Recently, a new Aspect-Oriented Programming (AOP)

paradigm has introduced several ideas addressing the
extensibility issues of object-oriented software. AOP
originated from several related ideas, eventually
becoming a consolidated core of many similar paradigms,
including adaptive programming, composition filters,
multidimensional separation of concerns, subject-oriented
programming, and others.

The original term was introduced by Gregor Kiczales
and colleagues in their report at a European Conference
on Object-Oriented Programming [3]. Based on the

06 Particle Dynamics In Accelerators And Storage Rings,
Cooling Methods, New Methods Of Acceleration

Proceedings of RuPAC 2008, Zvenigorod, Russia

25

analysis of several applications, the report identified
functional properties crosscutting the basic system’s
structure and suggested that they represented some new
concept which was orthogonal to the conventional
component-oriented view of the software design. Since
such properties crosscut the system’s basic functionality
they could not be cleanly encapsulated in the existing
programming languages. To address this problem, the
authors suggested the AOP-based composite
implementation consisting of three parts: the conventional
component program, the aspect program implementing
crosscutting concerns and an aspect weaver for combining
both component and aspect modules.

Subsequent studies and aspect mining have confirmed
the original motivation and identified crosscutting
concerns in different applications. The scope of them is
quite broad and expanding - security, logging,
persistence, debugging, distribution and others. The
Visitor-like accelerator modeling applications appear to
fall very naturally in this category since they deal with
many AOP concepts. Particularly, the Visitor pattern
separates processing operations from processed data
structures and combines related operations into the Visitor
subclass. In AOP, these operations can be considered as
crosscutting behavior of associated tree nodes and can
therefore be represented by the corresponding construct.
For example, the application of aspect-orientation to the
processing of heterogeneous abstract syntax trees (AST)
is discussed by Wu and colleagues [6].

Similar to the accelerator modeling environment, AST
serves as an internal and intermediate representation of
the source program during the different phases of the
compilation process including context checking,
optimization, and code generation. Depending on the
applied algorithms, each compilation phase introduces an
additional set of requirements. Moreover, a set of the
compiler algorithms is not fixed and can vary according
to the complexity of the programming languages and their
implementations. Adhering to the Visitor pattern as a
strategic direction, Wu and colleagues consistently
developed its aspect-oriented version for working with
AST. The suggested aspect-oriented approach was
implemented in the AspectJ programming language and
proof tested in a case study of the proprietary
RelationJava compiler.

Following Wu and colleagues’ approach, the procedure
for connecting accelerator modeling algorithms with the
accelerator structure would consist of three steps. First,
the concrete visitor classes, Tracker and Mapper, should
be rewritten as the corresponding abstract aspects with the
common helper routines. In the second step, every visit
method for each type of the accelerator elements should
be implemented as the propagate method in the
corresponding type-specific and algorithm-specific
aspects (see Figure 3). These fine-grained aspects of each
category of algorithms would be derived from the basic
aspects, Tracker or Mapper, and inherited its helper
routines.

Figure 3: The Tracker and DipoleTracker aspects

The third step would introduce the LossCollector aspect
which allowed to extend the original algorithms with the
additional behavior based on the AspectJ dynamic joint
point model (see Figure 4).

Figure 4: The LossCollector aspect

This application however exposes an important issue
associated with the run-time behavior of applying aspects
and its comparison to the traditional plug-in mechanism,
an issue that is especially important in the multi-stage
scenarios. According to the AspectJ specification, inter-
type declarations, which allow one to add members and
methods across multiple classes, operate statically, at
compile-time. On the other hand, the object-oriented
patterns, like Visitor, can be transparently managed in
run-time.

MUTABLE CLASS APPROACH
In the present UAL framework, the limitation of the

Visitor pattern was solved by another object-oriented
pattern, Mutable Class [7]. Mutable Class was derived
from a combination of two design patterns: Type Object
[8] and Strategy [5]. The Type Object encapsulated the
common class data in a singleton of the additional class,
the so called Type Class or Class Type. In the Mutable
Class variant, this singleton also maintains the behavior of
the class objects. A Strategy encapsulates the
implementation of this behavior into separate classes and
provides the mechanism for their interchange. The
Mutable Class model is consistent with the UML
semantics and can be considered as the implementation of
the Instance-Class-Operation association [9]: “An
operation is owned by a class and may be invoked in the
context of objects that are instances of that class.” The
Strategy pattern does not change this ownership and only
extends it with the flexible and dynamic features. The
corresponding structure diagram is shown in Figure 5.

abstract aspect Tracker {
 public void AcceleratorComponent
 propagate(Bunch bunch) {
 …
 }
}
aspect DipoleTracker extends Tracker {
 public void Dipole.propagate(Bunch bunch){
 …
 }
}

aspect LossCollector {

 poincut checkAperture(AcceleratorComponent ac) :
 target(ac) && call (* *.propagate(Bunch));

after(AcceleratorComponent ac): checkAperture(ac) {
 ….
 }
}

06 Particle Dynamics In Accelerators And Storage Rings,
Cooling Methods, New Methods Of Acceleration

Proceedings of RuPAC 2008, Zvenigorod, Russia

26

Figure 5: Structure of the Mutable Class pattern.

To manage the behavior of complex structures, the Class
Type and Strategy instances can be grouped in Registries.
Figure 6 shows a class diagram that illustrates
relationships among the different Mutable Class
components in the case of the accelerator heterogeneous
model.

Figure 6: Structure of the Mutable Class-based framework
for traversing heterogeneous accelerator structures.

 According to the Mutable Class approach, each node of
the accelerator structure is associated with the
corresponding class type which maintains a pointer to the
Component Algorithm instance. The accelerator
traversing procedure does not access this instance directly
and delegates the request via the propagate method.
Drawing an analogy with the Visitor pattern, the Mutable
Class approach replaces the Visitor run-time selection
mechanism with prior binding. According to the aspect-
oriented terminology, the Class Type serves as a joint
point between the extent of the accelerator nodes and the
woven algorithm. On the other hand, this weaving
procedure is not limited by compile-time as in the case of
aspect-oriented approaches and preserves the run-time
behavior of the Visitor pattern. As a result, the Mutable
Class represents a composite solution combining the
advantageous features of both the Visitor pattern and the
aspect-oriented weaving procedure.

UAL3 COMPOSITE APPROACH
The proposed UAL 3 framework is logically derived

from the Mutable Class pattern. In this approach, the
mutability concept is transferred from a class to
individual objects and correspondingly the Mutable Class
is transformed into the Mutable Object (see Figure 7).

Figure 7: Structure of the Mutable Object pattern.

According to the Mutable Object pattern, each object

may contain a collection of Mutable Methods. Like

Mutable Class, Mutable Method is designed after the
Strategy pattern and maintains a reference to the actual
method, an instance of the Method class. In addition to
this reference, Mutable Method can propagate the request
to its delegate. By default, the Mutable Object pattern
implements the Mutable Class scenario. In this case, only
the Class Type singleton (e.g. ClassAType) allocates a
collection of Mutable Methods. Then objects of the
corresponding class (e.g. ClassA) delegate their requests
to this singleton.

By adding the AOP Conceptual Reference Model [4],
the Concern Composition package can select a collection
of objects and assign their delegates to the Behavioral
Advices of the Joint Points (see Figure 8).

Figure 8: Integration of the AOP Conceptual Reference

Model with the Mutable Object pattern.
This scheme also provides the implicit partial support

of structural extensions that can be associated with the
corresponding instances of the Method classes. The
collection of Mutable Methods is designed after a virtual
method table, a mechanism used in object-oriented
languages for supporting run-time method binding. In
UAL, it will be implemented in the framework layer. In
principle, the mutability feature can be naturally added
into the method declaration of the programming
languages. As a result, this approach will also resolve the
eligibility issues associated with the AOP-based changes
of the original source code.

REFERENCES
[1] N.Malitsky and R.Talman, “Accelerator Description

Formats,” ICAP’06
[2] N.Malitsky, T.Satogata, and R.Talman, “Configurable UAL-

Based Modeling Engine for Online Accelerator Studies,”
PAC’ 03

[3] G. Kiczales et al., “Aspect-Oriented Programming, “
ECOOP’ 97

[4] A. Schauerhuber et al., “A Survey on Aspect-Oriented
Modeling Approaches,” Technical Report, Vienna
University of Technology, 2006.

[5] E.Gamma, R.Helm, R.Johnson, and J.Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software,”
Addison-Wesley Professional, 1995.

[6] X. Wu et al., “Separation of concerns in compiler
development using aspect-orientation,“ ACM Symposium
of Applied Computing, 2006

[7] N.Malitsky and R.Talman,.”Framework of Unified
Accelerator Libraries,” ICAP 98

[8] R.Martin, D.Riehle, and F.Buschmann, “Pattern Language of
Program Design 3,” Addison-Wesley, 1997

[9] OMG, “Unified Modeling Language, Infrastructure,
V2.1.2,“ OMG document number: formal /2007-11-04

Class A Class A Type Strategy

Strategy 1 Strategy 2

1
*

Quadrupole Mapper

Dipole Mapper

Mapper
Registry Tracker

Registry

Component Algorithm

Accelerator

Quadrupole

Dipole

Component

 Component
Type

Quadrupole Type

Dipole Type

Component
Type

Dipole Tracker

Quadrupole Tracker

Extensions Extensions Extension

Mutable Class

Object Mutable Method

Method 1 Method 2 Class A Type Class A

Method
*

Object Mutable Method

Method 1 Method 2 Class A Type Class A

Method

delega
*

Joint Point Behavioral Advice

06 Particle Dynamics In Accelerators And Storage Rings,
Cooling Methods, New Methods Of Acceleration

Proceedings of RuPAC 2008, Zvenigorod, Russia

27

