High energy micron electron beam non-invasive diagnostics based on diffraction radiation

G.Naumenko*, A.Potylitsyn, L.Sukhikh

Tomsk Polytechnic University

Transverse beam size measurement

SR - interferometer

SakaiaY. Yamamoto, et.al., Review of Scientific instruments, 71,3 (2000)

Laser wire scanner

Figure 1: Scheme of a gaussian laser beam focused to its diffraction limit.

H. Sakai, et.al., Phys.Rev.ST Accel.Beams 4:022801,2001.

Transition Radiation Monitor

Figure 3: High-resolution optical transition radiation monitor tested at ATF/KEK. The monitor is displaced when the target is inserted in order to bring the beam close to the lens.

M. Ross, et.al., 2001 IEEE Particle Accelerator Conference, Chicago, IL, 2001.

Laser interferometer

Figure 2: Schema of the generation of an interference pattern using a split laser beam. d is the fringe spacing.

Figure 3: Modulation of Compton scattered photons as a function of the vertical electron beam position for different beam sizes (top large, center medium, bottom small)

H. Sakai, et.al., Phys.Rev.ST Accel.Beams 4:022801,2001.

What about a non-invasive single bunch diagnostics?

	Non invasive	Single bunch measurement
SR - interferometer	yes	no
Laser wire scanner	yes	no
Transition Radiation Monitor	no	yes
Laser interferometer	yes	no
?	yes	yes

Non-invasive diagnostics based on the Optical Diffraction Radiation

Start: KEK ATF 2000

Flat slit target

Optical

diffraction

radiation

At 2004 the 10µ beam size has been measured

> P. Karataev, S. Araki et.al., PRL 93, 244802 (2004)

Measured ODR angular distribution

P. Karataev S. Araki et.al, NIM B 227 (2005)

Method limitation

For $E_e \approx 1$ GeV method sensitivity limit was reached for beam size $\approx 10 \mu$.

For $E_e \approx 30$ GeV the sensitivity decrease catastrophically.

ODR method modification

Example for γ=2500, α=5.6mrad Interference pattern after the integration over a Gaussian electron beam profile:

Single bunch measurement

For $\lambda = 0.5$ mcm $\sigma = 10$ mcm

No dependence on the Lorenzfactor in far field zone

For λ =0.5mcm and γ =60000 $\gamma\lambda$ =3cm. $a \Box \gamma\lambda$ is possible

Beam size effect is of the order of OTR intensity, which was measured using CCD from a single bunch.

Problem of beams together bringing

Moreover

The same results may be shown for:

Is a beam size measurement possible?

Beam size + beam position

Near field zone effect

V.A. Verzilov, Phys. Let. A 273 (2000) 135-140

Effect is peculiar to radiation angular distribution. It shows itself for ODR as well as for OTR.

e

target

detector

<1

R

For $E_0 = 30$ GeV, $\lambda \approx 0.5 \mu$ $\gamma^2 \lambda \approx 1800m$

Near field zone effect resolution

Pis'ma w JETPh, 84 3 (2006) 136

Conclusion

• Beam size ODR effect of this method is of the first order in contrast to the effect of the second order for the method based on a flat slit target. A radiation intensity beam size effect comprises 20~60% of OTR intensity. Single bunch measurement using CCD is possible near well as OTR measurement.

•The problem of radiation beams together bringing may be resolved using a special Frenel bi-prism.

•The near field effect problem may be resolved using optical system.

Test of ODR interference from the crossed target

