Beam Diagnostics Challenges and Innovations for FAIR Peter Forck and Andreas Peters for the Beam Diagnostics Group

Gesellschaft für Schwerionenforschung, Darmstadt

Facility for Anti-Proton and Ion Research Outline of the talk:

Demands and boundaries for beam diagnostics

>Examples of recent development

>Conclusion

The FAIR Facility

Demand and Boundaries for Diagnostics

- Common realization: Same design for all synchrotrons and storage rings ⇒ saves man-power and cost, required for maintenance
- > Exceptional large dynamic range:
 - High currents up to 10^{13} and down to single particles for RIBs
- Precise beam alignment: Small acceptance in synchrotrons and HEBT,

large space charge

- \Rightarrow feedback (closed orbit, tune chromaticity etc.) and ABS required
- ➢ Beam loss: Due super-conducting magnets low loss budget ⇒ feedback&ABS
- *High radiation:* Charge changing losses and slow extraction
 - \Rightarrow radiation hard electronics and shielding
- Compactness and UHV: low insertion space, materials for 5*10⁻¹² mbar ⇒ dedicated mechanical designs

> Interface to control system:

Modern and versatile, capable to accept various front-end systems

Parallel operation: Complex operation scheme

 \Rightarrow flexible and reliable data acquisition and analysis.

The Synchrotron and Storage Ring Diagnostics

Device	Measurement	Application	Remark & Status
DCCT	dc-current	Stored current, $1\mu A < I < 1A$	Commercial (Bergoz)
GMR-DCCT	dc-current	Stored current, I > 100 mA	Novel principle
CCC	dc-current	Stored current, 10 nA <i<1µa< th=""><th>R&D phase</th></i<1µa<>	R&D phase
ACCT	Pulsed current	Injection efficiency, interlock	GSI-design
FCT or WCM	Bunch structure	Maching, bunch gymnastics	Commercial (?)
BPM	Beam center	Closed orbit & feedback	Careful investigations
		Turn-by-turn, lattice functions	Novel baseband proc.
Exciter+BPM	Beam center	BTF, PLL tune tracking	Design not started
Quad-BPM	Quadmoment	Quadrupolar-BTF, maching	Design not started
Schottky	Longi.+transv.	$\Delta p/p$, cooling, tune, chroma.	Adoption of GSI design
IPM	Beam profile	Emittance, cooling, matching	Novel design, complex
BLM	Beam loss	Matching, halo, interlock	Versatile use, not started
Gird/Screen	Beam profile	First-turn	Standard

Current Measurement: GMR as Magnetic Sensor

Known bug[']: high current
+ low frequency bunches
⇒ Disturbance of DCCT-feedback:

Possible solution: New DCCT from Bergoz \rightarrow Test in winter 2006.

Possible solution: Magnetic sensor based on Giant Magnetic Resistance (used e.g. in hard-drives) Saturation field: 10 mT *Linear range*: 0 to ±7 mT Field-concentrator: Vitrovac[©] torus with 2 gaps Status: Test in 2007 *R&D:* GSI, Uni-Kassel.

SIS DCCT/ACCT with 270 mm diameter

BPM Layout for Cryogenic Installation

Foreseen design for SIS100/300:

- Elliptical shape for beam impedance
- ➢ Metalized ceramics
 expected mechanical stability of ≈50 µm after many cryo-cycles
 ⇒ material considerations.

Example: Metalized Al₂O₃

Specification:

Accuracy: 100 µm on turn-by-turn
 ≈10 µm @ 10 kHz
 (via 'k-modulation')
 Sensitivity: as high as possible,
 pre-amp: 120 dB dynamics
 Bandwidth: 0.1 to 100 MHz
 ⇒ FEM calculations.

BPM Layout: Detailed Finite Element Calculation

S-parameter CST-Studio[®] calculations: ل 200 کے S-parameter without ring with ring discrete port BPM vacuum chamber simplified in simulations 100 0 offset [mm] 0 -20 simulated with ring beam without ring grounded separating -40 additional microwave 50 100 150 200 rings in diagonal cuts guard ring port frequency [MHz]

Results:

Model of BPM for

- Optimized separation rings (thickness 1.5mm) double the sensitivity
- Optimized guard rings between planes suppress the offset
- ➢ Flat frequency response.

Position $x(f) = K(f) * \Delta U / \Sigma U + offset(f)$

Novel Approach: BPM Baseband Digitalization

Peculiarity: Bunch formation, varying rf 0.5 to 5 MHz
Tunnel: ampl./att. 120 dB dynamics *Digital baseband processing:*

- Digitalization: 125MSa/s, 14bit e.g. by Libera from I-Tech
- Sample-synchronous processing with Xilinx FPGA
- ➢ 256MB RAM, 1.25Gbit interface
- Algorithm design for FPGA
 - \rightarrow noise reduction
 - \rightarrow integration-gate, no-Gaussian
 - \rightarrow baseline reconstruction
- Planned for closed orbit feedback *Results at SIS18:*

≈100 µm for bunch-by-bunch EU-FP6 Collaboration: GSI, CERN, FZ-Jülich, Uni-Darmstadt, I-Tech.

P. Forck, A. Peters (GSI) at RuPAC 2006

Beam Diagnostics for FAIR

Transverse Profile by Ionization Profile Monitor

IPM: High performance device for turn-by-turn readout *and* 0.1 mm resolution *required for high current studies at SIS18/100/300, cooling studies at storage rings.*

e⁻ or ions detection:

▷ E-field (E≈±50 V/mm, 1% in-homogeneity)
▷ B-field for guidance (B≈30 mT, 1% in-homo)
▷ MCP (100x40 mm²)
High resolution mode with 100 μm:

CCD readout

Turn-by-turn mode with 1 μs time resolution:

100 photo-detectors
R&D: GSI, FZ-Jülich,
MSL-Stockholm,
ITEP, NPI-Uni-Moscow
under INTAS&EU-FP6.

P. Forck, A. Peters (GSI) at RuPAC 2006

Beam Diagnostics for FAIR

Novel Photo-Detectors for IPM: Si-Photomultiplier

Turn-by-turn readout → injection matching → fast emittance changes *Specification:* One turn ≈1 µs, 1 mm resolution. *Novel photo-detectors:* Silicon-Photomultiplier (developed by B. Dolgoshein et al., Moscow).

Test-device:

576 avalanche photo-diodes on 1mm² biased above break-down

Result: Single-photo amplification,

but acting as analogue detector.

R&D: ITEP-Moscow (incl. electronics)

Large aperture magnets for IPM

Beam Diagnostics for FAIR

Device	Measurement	Extr.	Application	Remark & Status
Reso. Trans.	Pulsed-current	Fast	Transmission, interlock	GSI-design
CCC	dc-current	Slow	Transmission, interlock	Novel principle
Particle Det.	dc-current	Slow	Transmission, \rightarrow For low current	GSI-design
FCT	Pulsed- current	Fast	Bunch structure	Commercial (?)
BPM	Beam center	Fast	Position, ABS	Like for rings, baseband processing
SEM-Grid	Profile	Fast	Profile \rightarrow low current	Adoption of GSI-design
MWPC	Profile	Slow	Profile	Adoption of GSI-design
Screen	Profile	F&S	Profile \rightarrow low current	Material investigations
IPM or BIF	Profile	F&S	Profile \rightarrow high current	R&D started
BLM	Beam loss	F&S	Matching, interlock	Like for Rings

Current Determination with nA Resolution

➤ HEBT: slow extraction → online transmission control
➤ Rings: low stored current e.g. RIB.

Cryogenic Current Comparators:

- Prototype tested at GSI in the 90ies
- > Improvement:
 - Nb instead Pb for the flux transducer less temperature drift
- ➢ reached 0.25 nA/√Hz ⇒ 8 nA @ 1 kHz
- ► *R&D*: GSI, DESY and Uni-Jena.

GSI prototype in 1997:

P. Forck, A. Peters (GSI) at RuPAC 2006

Beam Induced Fluorescence for intense Profiles

At RIB plasma-physics targets beam intensity melts intercepting material:

- \Rightarrow non-intercepting method required
- \Rightarrow compact installation in front of target.

Test of Beam Induced Fluorescence with N₂:

Beam Diagnostics for FAIR

P. Forck, A. Peters (GSI) at RuPAC 2006

Installation of hor&vert. BIF Monitor:

Results of Beam Induced Fluorescence

Beam Diagnostics for FAIR

P. Forck, A. Peters (GSI) at RuPAC 2006

The new FAIR facility requires significant R&D for diagnostics:

Common layout for large dynamic range: Form single particles to 10¹³ per pulse
 High current operation: Precise beam alignment with low beam losses,

novel non-destructive devices required

- Interface to control system: Versatile architecture at distributed locations, suited for parallel operation
- Production and installation: Modern & cost-efficient solutions required.

Thanks to the collaborators from: CERN, DESY, FZ-Jülich, I-Tech (Slovenia), ITEP-Moscow, MSL-Stockholm, Universities Darmstadt, Jena, Kassel and Moscow. *Thanks for funding by:* CARE-HIPPI, CARE-HHH, EU-FP6 DIRAC-PHASE 1, EU-FP6 DIRAC Secondary Beams, INTAS.