
INSTRUMENTATION FOR COMPUTER BASED MONITORING AND
CONTROL SYSTEM DEPLOYMENT

V.G.Kurakin, V,M.Alekseev, V.P.Busygin, A.V.Koltsov, Lebedev Physical Institute, Moscow, Russia
P.V.Kurakin, Keldysh Institute of Applied Mathematics, Moscow, Russia

Abstract
Visual programming system and appropriate hardware

are described to deploy and use automation monitoring
and control system.

INTRODUCTION
In this paper, we describe the instrumentation that

allows to anybody to organize a measurement console on
the basis of a single computer for an experiment as well to
deploy rather sophisticated automated control system for
experimental or industrial complex. The kernel of this
instrumentation is program code (FlexUsI) that controls
digital and analog devices constituting hard ware interface
between physical sensors and computers. The key features
of the code mentioned are as follows. First of all, it
provides data acquisition as well control signals
generation in real time scale; this is quit usual function of
any program code for computer based measurements and
control. Second, it allows constructing necessary user
interface consisting of virtual devices that corresponds to
real devises. This visual programming is realized at
program run time that means that console is ready for use
immediately after building. Third, this code posses the
auto configuration property similar to plug play technique
in modern computers. The other part of the
instrumentation is the collection of various interface
devices for data processing and control signal generation.

VISUAL PROGRAMMING SYSTEMG
In this item, we will demonstrate the deployment of

computer based monitoring and control system on the
example. Suppose that the complex under automation
consists of rf linear pulse accelerator and experimental
area, control rooms for accelerator itself as well as for
experiment being assumed. There are cables connecting
accelerator sensors and drivers with control room devises,
the same is assumed also for experimental area.

One has to have a computer in control room (at least
one) to observe data from accelerator sensors as well as to
produce driving signals for equipment installed. Interface
devices between cables termination and computer are
necessary as well. We use CAMAC standard (this is not
the best solution, but this standard is available for many
scientific laboratories). It is supposed that there is a
computer at experiment control room as well. For data
exchange, connection between computers is necessary,
and LAN (local area network) is used for this purposes.
Additional computers may be used. For example, to
reduce noise of any nature, it is highly desirable to convert
analog signal to digital one close to rf accelerator then
transmitting digital code to control room computer over
LAN.

In order to synchronize data acquisition from different
sensors, a single computer process has to control all
digital interface equipment installed. This means that a
single program code has to be used at any individual
computer. This in turn results in definite functionality of
the code if the same code has to be used for different
configurations. In particular, it has to possess the property
to acquire any desired equipment in measurement
computer console as well as to configure it. Thus, we
arrive at the solution that a program code has not only to
control hardware but to configure a measurement console
too. We have realized such software. Here we describe its
functionality, while a way how such functionality has been
achieved will be discussed in details in appropriate item.

Waveform digitizer is used to monitor pulse analog
signals, and appropriate component from component
repository has to be used to acquire digitized data. With
drag and drop procedure it has to be placed on the top of
data module – special window that contains all devices
used. After that special table of properties becomes
available, and operator can configure virtual device by
specifying these properties with specific values.

Several components are used for data visualization.
These are numeric indicator, oscilloscope, histogram and
spectrum. We do not go in details of data visualization
step because the configuration is similar just described,
while functionality of data representation is nearly the
same like in commercial math software. Animation is
foreseen, that is very helpful for multi dimensional
measurements.

Network components make it possible data exchange
between individual consoles in real time scale over
network thus allowing building up large automated
systems. To transmit data acquired from local hardware to
remote computer or to the whole network, transmitter
component has to be installed and configured at local
computer in a manner just described. Similar receiving
component has to be installed on remote computer. The
data transmitted over network could be manipulated in
ordinary manner similar to those obtained from local
hardware. We use UDP protocol. This protocol is the
fastest one among TCP/IP family and works in real time
scale. It does not guarantee data lost less transmission and
one has to take care of reliable data delivering in any
particular case.

Interpreter component makes it possible acquired data
preprocessing in real time scale. Preprocessing code may
be written in text editor or loaded from a file.

Just built up and configured, the console may be turned
immediately to measurement mode. Detail one can find in
reference [1].

267

Proceedings of RuPAC 2006, Novosibirsk, Russia

HARDWARE
We have developed a basic set of devices that makes it

possible to deploy computer based monitoring and control
system [2]. In this item, we will enumerate them as well as
give brief description.
1. Multi channel waveform digitizer is built up on the
basis of AD9050. It digitizes input signal continuously
that guarantee optimal thermal condition and stable
operation as the result. Synchronizing pulse starts filling
in built in memory with digit code, record process being
stopped when the memory is filed completely. After
reading out necessary information the device is unlocked
thus being preparing for next cycle. All digitizers but one
installed in the crate are slave synchronized with muster
one. This guarantees complete synchronization of multi
channel measurements thus allowing correlation studying.
The operation frequency (four sub ranges 33 MHz/16 –
33MHz/1) and memory size (32 K words) provides
observation of signals with pulse duration in the range
dozens nanoseconds – 16 milliseconds. Device noise
does not exceed 3 channels, the whole channels number
being equal to 1024.
2. 8-channel Digit-to-Analog Converter (DAC) united
with multiplexer 8-channel Analog-to-Digit Converter
(ADC) in the same module is built up on the basis of
microcircuits AD7808 and AD976. The unit is used to
produce precise dc voltage to control wide class of
electronic circuits as well as to measure precisely dc and
pulse signals.
3. Arbitrary waveform synthesizer – multi purposes
computer controlled generator, providing any desired
waveform signal generation in wide range from
microseconds to dozens milliseconds. This device has
been developed manly to modulate rf voltage of rf
accelerators and functions as follows. Necessary voltage
dependence is designed in form editor and appropriate
program fills in device memory. Incoming pulse starts
scanning generator that reads out memory with the
frequency 2 MHz and puts digit code to DAC input. Time
domain dependence of the signal from DAC output is
similar to that designed in form editor.
4. 8-channel timer uses the technique just described. All
memory with the exception of one byte is filled with
zeros, one bit only of the selected byte being equal to unit.
This unit arises at the output of the appropriate channel in
the process of memory scanning. Thus after start pulse
coming pulses are generated in all 8 channels being
delayed relative start pulse. It is quite clear that the device
might be used to generate pulse trains with any desired
pulse distribution within train.
5. Multi purposes pulse generator is built on the bases of
timer microcircuits 82С54-2 and can be used to control
step motor driver, to synchronize experimental complex
equipment and so on. Each channel has several inputs and
outputs to realize all functions foreseen. Several operation
modes are possible, continuous pulse generation with
programmable switch on/off function as well as mode of
pulse train being among these.

6. 16-channel charge-to-digit converter complements the
devices just described. It built up on the basis 16ZCP and
possesses the following specifications: 11 bit amplitude
resolution with gate width in the range 50 – 600
nanoseconds. Conversion time interval is equal to 90
microseconds.
7. High stability rf synthesizer is built on the basis
AD9851. This device is realized on the idea of DDS
(Direct Digital Synthesis, Analog Device 1996).
Practically continuous frequency changing is available,
the frequency stability being the same as reference quartz
one. The frequency range of our synthesizer is 0-70 MHz.

All devises described above are equipped with
microcircuit 24LC21. The information stored in this
read/write memory is used for device identification as
well as for console configuration check at program start
and devices installed searching. This simplifies
significantly the configuration procedure and guarantees
errors avoiding as well, especially in the case when many
devices installed at CAMAC crate.

As it has been mentioned, we use CAMAC interface
with crate controller on ISA bus interface. To use modern
computers that have not ISA bus intermediate device with
USB bus is foreseen.

PROGRAM CODE
To achieve functionality mentioned above one has to

have an access to methods and properties of the graphical
interface objects at program run time stage. We had
chosen Borland C++ Builder as programming
environment for several reasons [3]. Besides the well
known feature of rapid application development this
programming tool possesses also the remarkable
properties to move properties and methods accessibility to
executable file stage. We want to remind that C++ Builder
environment allows to create desired user interface using
drag-and-drop method and then filling out appropriate
forms in so called object inspector. Visual Component
Library (VCL) is used as the base of building up
measurement console components. It is worth to point to
the fact that VCL components are real objects rather than
abstract representation of classes used to facilitate and
automate programmer routine work in writing program
code. What is important for us, VCL supports the next
functionality during run time. It allows enumerate all
properties, which has been declared as __published. Also
there are functions to read values of these properties and
to change them as well. So called component persistence
is supported. This means that component properties set
can be saved to a stream (file or computer memory) and
an object can be created on base of this description at any
time. Abstract class TDesigner is declared in VCL library
for visual editing support. In designing mode, all events
sent to component, first can be handled by an object of the
class inherited from TDesigner. It allows to handle user
input and to prevent (in some cases) standard behavior of
component as well.

Thus, besides majority of auxiliary tasks inherent to any
program code developing two key problems have to be
solved to achieve program functionality under discussion.

268

Proceedings of RuPAC 2006, Novosibirsk, Russia

User Interface is not some collection of elements for
measured data visualization et al only. It may be an
interaction between these elements – there are not
“bricks” only but “glue” too. In other words, there must
be some “lows”, embedded in real components that
behave the components interaction, and this is the second
task to be solved in addition to the first one just described
above.

Two root object classes form the basis that determines
the bases of program kernel. This are VBaseDisplay and
VBaseDataModule. The first one correspond to a form
(object, that has the window, that may contain displayable
elements)and is derived class with the parent one
TCustomForm. The second one corresponds to data
module and is derived from base class TDataModule. An
object of this class has not the window and as a result may
contain other not displayable objects only. To provide
designer mode at run time phase class VDesigner had
been created and Borland C++ Builder TFormDesigner is
the parent class of our class.

As has already mentioned necessary components
property may be accessible at run time phase due to VCL
library functionality. Necessary function set is available in
Borland C++ Builder environment in order to get as well
to change component properties. User interface had been
developed to edit component properties, and this is similar
to object inspector in C++ Builder environment. This
interface becomes visible after switching software to
designer-editing mode.

We follow usual programming style when standard
functionality inherent to real component is determined by
parent class, while components are created from derived
classes with additional specific properties and methods.
Listed below are the base (parent) classes that determine
“interactions lows” between real components in user
interface, responsible for data acquisition, preprocessing,
representation and storing:

- Class VDevice determines interface with objects
VStorage and VDeviceGroup. All classes that are
responsible for data acquisition and have any interface
with objects VStorage and VDeviceGroup have to be
derived from this class.

- Class VStorage determines interface with objects
VDeviceGroup and VDevice. All classes that are
responsible for acquired data storing have to be derived
from this class.

- Class VDeviseGroup determines interface of objects
VStorage with VDevice in the case, when all devices
behave as the group. This means, that only one object in
the group initiates a process of data acquisition and
storing.

- Class VOutputDevice determines interface of data
channels enumerating as well as data themselves. It is
derived class from parent one VDevice.

- Class VDACControl represents control component.
We include it in base class set in order to have possibility
for control object to be notified about data acquisition
starting and ending.

- Class VChannelView represents component for data
displaying. Component of this class may be data source as
well.

- Class VBaseDisplay is the container for the
components which are responsible for data displaying and
interacting with user.

- Class VBaseDataModule is container for non-
displayed components. E.g. component for data reading
from physical device is an object of this class.

Components of three last classes mentioned above are
notified about data acquisition starting and ending. These
are notified about new data incoming as well.

- Class SDataValue is used for data transmitting
between components. It contains data themselves as well
additional information concerning this data – data
identifier, their type and so on.

Data acquisition and processing algorithm looks as
follows. Appropriate component is notified (over interrupt
initiated by the signal of device controller and subsequent
message sending in windows environment) about new data
incoming. The component reads data, assigns new unique
identifier to this data portion and calls global function that
informs all objects of the classes VBaseDisplay and
VBaseDataModule of this event. If appropriate
component has a connection to this data source it checks
if these are new data and then processes them. Data source
in turn may have an interface with other data source, and
if this takes place it sends appropriate request to this
object.

CONCLUSION
The instrumentation under discussion proved to be

convenient and power tool. We plan to continue this work
to bring this tool to commercial level.

REFERENCES
[1] V.G.Kurakin, A.V.Koltsov, P.V.Kurakin. Flexible

User Interface for Computer Measurement and
Control. In Proceedings of the 2001 Particle
Accelerator Conference, Chicago, Illinois, USA,
June18-22, 2001, pp.1192-1194.

[2] V.M.Alekseev, V.P.Busygin, A.V.Koltsov,
P.V.Kurakin, V.G.Kurakin. Computer based
monitoring and control system for RF accelerators. In
Proceedings the of 18th Conference on Charge Particle
Accelerators RUPAC-2002, Obninsk, October 1-4,
2002, pp. 552-557 (in Russian).

[3] V.G.Kurakin, A.V.Koltsov, P.V.Kurakin. FlexUsI –
Intrface Builder for Computer Based Accelerator
Monitoring and Contol System. In Proceedings of the
19th Conference on Charge Particle Accelerators
RUPAC2004, October 4-8, Dubna, Russia 2004, pp.
347-349.

269

Proceedings of RuPAC 2006, Novosibirsk, Russia

