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Abstract
The cooling of ion beams increases the strengths if their

space charge forces and the nonlinearities of such forces.
These variations change the stability conditions for trans-
verse coherent oscillations of the ion beam and the shape
of the stability diagram of these oscillations. The beam
cooling holds until the coherent frequency shift of the beam
approach the border of its stability diagram. Without spe-
cial efforts this phenomenon defines a non-resonant limit
on the attainable value of the Laslett tune shift of the ion
beam during its e.g. electron cooling.

INTRODUCTION
One of the important limitations on the operation perfor-

mance of ion beams occurs due to their space charge fields.
For many reasons the strengths of these limitations are de-
scribed using the Laslett tune shift of the beam, which is
defined as the value of the tune shift of small betatron os-
cillations of ions due to space charge fields of the beam.
For a coasting beam of a round cross section consisting of
non-relativistic ions the Laslett tune shift reads

∆νL =
Ne2

4πMv2ε
. (1)

Here, Ne is the charge of the beam, M is the ion mass,
v is its velocity, ε is the transverse emittance of the beam.
Due to repulsion of particles the space charge fields de-
crease the tunes of the betatron oscillations. For small am-
plitudes of betatron oscillations relevant tune shift is equal
to (−∆νL). Outside the beam the space charge fields de-
cay. Hence, for the particles oscillating with the amplitudes
exceeding transverse beam sizes the tune shifts due to space
charge fields tend to zero. It means that the space charge
fields increase the tune spreads of the betatron oscillations
in the beams. If the footprint of the beam in the plane of
the tunes of the vertical (νy) and horizontal (νx) oscilla-
tions covers some resonant regions, the transverse sizes of
the beam blowup resulting in the degradation of its phase
space density. The sizes of the beam footprint are propor-
tional to the value of ∆νL. So that ∆νL should not exceed
some threshold value ∆νL0 which, generally, depends on
the machine parameters. In particular, it depends on be-
tatron tunes and on the azimuthal symmetry of the lattice.
The calculations of such threshold values ∆νL0 is not easy
even for simplified cases. Therefore, in particular designs
of the ion storage rings one uses as ∆νL0 some ”world av-
erage value” which for the storage rings usually does not
exceed 0.05.

In particles accelerators and storage rings the beam in-
tensity can be limited due to interactions of the coherent os-

cillations of the beam with the wakefields, which the beam
induces in surrounding electrodes. In such cases and ne-
glecting the frequency spread of the beam, coherent oscilla-
tions can become unstable due to dissipations of the wake-
fields. The most unstable are the dipole coherent modes.
These conventional instabilities can limit the beam inten-
sity in wide frequency spectra complementary to the limita-
tions due to space charge fields. Generally, increases in the
frequency spreads of the beam increase the Landau damp-
ing of the beam coherent modes and can eliminate the in-
stability. The beam cooling reduces the frequency spreads
due to the lattice chromaticity and due to the lattice nonlin-
earities, but increases the Laslett tune shift of the beam.

The space charge forces depend on the distance of a par-
ticle to the center of gravity of the beam. In a storage ring
with an idealized lattice providing the linear and achro-
matic focusing the equations describing coherent dipole
oscillations and incoherent oscillations of particles inside
the beam are uncoupled . In such a lattice, the frequency
spreads due to space charge fields of the beam do not con-
tribute to Landau damping of dipole coherent oscillations.
In a coasting ion beam Landau damping of dipole oscil-
lations can appear due to the revolution frequency spread,
due to the lattice chromaticity, or due to e.g. a cubic non-
linearity of the lattice focusing (see, e.g. in Refs. [1] –
[6]). We shall define the frequency spread of the beam due
to these sources using δωext. Specific features of Landau
damping strongly depend on the frequency distribution in
the beam. The width and the shape of this distribution is
modified by the tune spreads due to space charge of the
beam. Correspondingly, the stability conditions of the co-
herent oscillations of such a beam vary with the variations
of the value of ∆νL.

In this report, we describe the variations of the stability
conditions for dipole coherent oscillations in the coasting
beam for the cases, where the values of the Laslett tune
shift and of δωext vary due to the beam cooling.

STABILITY DIAGRAMS
For simplicity we consider e.g. vertical coherent oscil-

lations of a coasting beam and assume that the variations
of the amplitudes of coherent oscillations due to interac-
tions with wakes are substantially faster than that due to
the beam cooling. Correspondingly, we describe coher-
ent oscillations of the beam using the Vlasov equation.
For the same reasons, we use the model where the space
charge forces of the beam are described using the expres-
sions: Fy(y − d, x) ' Fy(y, x) − d(φ, t)(∂Fy/∂y) and
Fx(y, x). Here, d(φ, t) is the vertical dipole offset of the
beam, φ = θ−ω0t, θ = s/R0 is the particle azimuth, ω0 is
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the revolution frequency of the reference particle. Simple
calculations with the linearized Vlasov equation result in
the following dispersion equation (see e.g. in Ref.[6] and
[7] for more detail):

1 = −
∫ ∞

0

dIxdIyIy
∂f0

∂Iy
[Ωm,n + myΩy(I)] (2)

×
∫ ∞

−∞
d∆p

ρ(∆p)
∆ωm − g∆p−my∆ω3 + myΩy(I)

.

Here, Imω > 0, f0(Iy, Ix)ρ(∆p) is the distribution func-
tion of the beam without coherent oscillations, Ix,y are the
action variables of the vertical and of the horizontal beta-
tron oscillations, ∆p = p − p0 is the deviation of the par-
ticle momentum from the nominal value, g∆p is the chro-
matic frequency shift of the betatron oscillations of a par-
ticle, ∆ω3 is its betatron frequency shift due to e.g. lattice
octupole fields, ∆ωm = ω − myω0νy is unknown value
of the frequency shift (my = ±1), Ωm,n is the coherent
frequency shift of the monochromatic beam:

Ωm,n =
myNe2Z⊥(myω0νy + nω0)

4πp0νy
, (3)

Z⊥(ω) is the transverse broadband wake impedance. The
value Ωy(I) ∝ ∆νL in Eq.(2) describes the frequency
shift of the vertical betatron oscillations of a particle due
to the beam space charge fields. The dispersion equation
(2) can be used either for the calculations of the eigenfre-
quencies of coherent modes or for the calculations of the
stability diagram of the transverse coherent oscillations of
the beam. For the last purpose, the value Ωm,n is calcu-
lated from Eq.(2) where the variable ∆ωm is varied slightly
above the real axis (∆ωm → ∆ωm + i0). If we define
∆ω3 = aIy − bIx, then the equation for the stability dia-
gram reads

Ωm,n = ∆ωm − gQyp + aQyy − bQyx

Qy(∆ωm)
, (4)

where

Qy =
∫ ∞

0

dI

∫ ∞

−∞
d∆p

Iy(∂f0/∂Iy)ρ(∆p)
∆ωm − δω(∆p, I) + i0

, (5)

Qyp =
∫ ∞

0

dI

∫ ∞

−∞
d∆p

Iy(∂f0/∂Iy)∆pρ(∆p)
∆ωm − δω(∆p, I) + i0

, (6)

Qyy =
∫ ∞

0

dI

∫ ∞

−∞
d∆p

I2
y (∂f0/∂Iy)ρ(∆p)

∆ωm − δω(∆p, I) + i0
, (7)

Qyx =
∫ ∞

0

dI

∫ ∞

−∞
d∆p

IxIy(∂f0/∂Iy)ρ(∆p)
∆ωm − δω(∆p, I) + i0

, (8)

and δω(∆p, I) = g∆p+my∆ω3(I)−myΩy(I). Equation
(4) shows that without external frequency spreads (g = 0,
and a, b = 0) for any strength of the beam space charge
the stability diagram coincides with the real axis of Ωm,n.
This fact confirms the so-called Merle–Möhl rule [1]. The

beam cooling results in gradual decrease in the external fre-
quency spread δωext as well as in the increase in the value
of the Laslett tune shift. Correspondingly, the shape of the
stability diagram deforms during the beam cooling. In par-
ticular calculations of these deformations we took a Gaus-
sian momentum distribution in the beam with the rms width
σp. We also assumed a flat beam εx À εy and the expo-
nential distribution in the horizontal plane with the width
Ix0 = pεx. The initial strength of the space charge field
was specified using the parameter q = ∆νLω0/(δωext)in.

Several examples given in Figs.1–4 show that during the
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Figure 1: Stability diagrams for the vertical coherent oscil-
lations (ζ = Ωm,n/(δωext)in). The oscillations are stable
below the border curve, a = b = 0, from top to bottom
(σp/σin) = 1, 0.75, 0.5, 0.25 and 0.1, no transverse cool-
ing; mx = 1.
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Figure 2: Same as in Fig.1, but q = 5.

beam cooling the height of the stability diagram decreases.
Increases in the Laslett tune shifts due to transverse cool-
ing of the beam shift the stability diagrams to the lower
values of the coherent frequency shifts Ωm,n. Even for
the cases, where the momentum cooling dominates (Figs.1
and 2) that can break the symmetry of the stability diagram
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Figure 3: Same as in Fig.1, but equal rates of the transverse
and longitudinal cooling.
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Figure 4: Stability diagrams for the vertical coherent oscil-
lations. The oscillations are stable below the border curve,
g = 0, a = 0, b < 0, flat beam (εy ¿ εx) from top to bot-
tom (εx/εin) = 1, 0.75, 0.5, 0.25 and 0.1, q = 1, mx = 1.

provided that the Laslett tune shift is large enough (com-
pare e.g. Fig.1 and Fig.2). For a given impedance budget
of the ring, it means that during the cooling the stability
diagram approaches the nearest thresholds of instabilities
of its coherent oscillations. Apart from the possible loss
of the beam intensity an approaching these thresholds in-
creases the Schottky noise background of the beam (see
e.g. in Ref.[7]). On its turn, that can result in additional
transverse heating of the beam due to the diffusion of the
ions on these coherent fluctuations (see e.g. in Ref.[6], or
in Ref.[7]). The strengths of relevant diffusion coefficients
increase inversely proportional to the distance to a thresh-
old [7].

CONCLUSION

The beam cooling decreases the thresholds of instabil-
ities of transverse coherent oscillations of the beam. The

loss of the beam stability becomes more severe due to trans-
verse cooling which increases the Laslett tune shifts of the
beam. This phenomenon poses additional limitation on the
attainable values of the Laslett tune shifts in the ion storage
rings with the beam cooling. Provided that the instabilities
occur due to a wideband beam environment and contrary
to ordinary cases, relevant threshold value ∆νL0 will not
depend on the betatron tunes, but will be determined by
the impedance budget of the ring. This threshold can be
increased using appropriate feedback systems which can
damp unstable modes of the dipole coherent oscillations.
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