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Abstract 
The Courant-Snyder parametrization is most 

convenient way for describing particle-uncoupled motion 
in a storage ring. In the case of the weak-coupling this 
parametrization can be extended with the Edward-Teng 
[1] or Lebedev [2] description ways. The eigenvectors 
and eigenvalues of the betatron oscillation matrix slightly 
modified but the its physics meaning is kept. Such 
parametrizations work for the strong coupling yet but the 
physics interpretation obtained results are complicate 
enough. This article proposed another way for the 
description of the particle motion in the storage ring with 
the strong longitudinal magnetic field. 

INTRODUCTION 
At the presence of the strong longitudinal (or drive) 

magnetic field the particle motion can be decompose on 
the fast Larmour rotation around the magnetic force line 
and slow drift of Larmour center. The center of the 
Larmour rotation moves along the magnetic field force 
line and drifts slowly in the plane (x,y). This drift motion 
is induced by the small transverse component of the 
magnetic and electrical forces, non-homogenuity of the 
longitudinal magnetic field. Thus the particle motion can 
be decomposed to cyclotron (fast) and drift (slow) motion 
modes. The equations describing these motion modes are 
weak coupled in the strong longitudinal magnetic field. In 
the limit of the infinite magnetic field this motion modes 
may be considered as uncoupling. Further the coupling 
property of the motion in the new variables can be taken 
into account with a perturbation method. The describing 
approximation is good at the strong value of the magnetic 
field because at a low value of the longitudinal magnetic 
field the coupling becomes very essential. Thus, this 
situation is opposite to the classical case when the initial 
uncoupling vertical and horizontal motion is coupled by a 
weak magnetic field. In our case the insufficient value of 

the longitudinal magnetic field produces the coupling 
between drift and cyclotron modes. 

MOTION EQUATION 
The two-dimensional motion of a particle in a focusing 

lattice structure can be described by the following set of 
the equation [4] 
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Here h is curvature of a planar curve that is the base 
curve of the storage ring. The particle momenta  

p
dt
rdm r
r
=γ , bpnppp yxs

rrrr ++= τ , 

have the components 
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and corresponds to a radius-vector (x,y,s) written in the 
standard form [4] 
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Making following change of variables and linearization 
procedure 
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the new equations set can be obtained. Here the pair 
(P1,Q1) is the drift mode and the pair (P2,Q2) is cyclotron 
mode. 
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The following designation of magnetic field 
coefficients are used here: cpBeK syx 0= , 

cpBeK sxy 0= , cpBeK sss 0= ,  

( )( )xBcpeK ys ∂∂= 0  is a normal component of 
magnetic field gradient, ( )( xBcpeN xs ∂∂= 0 )  is a 
skew-quadrupole component of magnetic field 
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gradient, ( )( sBcpeN sss ∂∂= 0 )  is the longitudinal 
gradient of longitudinal magnetic field. 

One can make sure that these equations have 
Hamiltonian form [5]. The corresponding Hamiltonian 
looks in the following way 
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The non-quadratic terms relate to the difference 
between the base curve of the storage ring and the 
equilibrium orbit. Really the equilibrium orbit in such 
system can be non-planar but the planar geometry is 
very convenient with technical point of view. 

ACTION-ANGLE FRAME 
In general case the two-dimensional linearly coupled 

motion can be written as [3] 
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where J1 and J2 are the actions, Φ1=2⋅π⋅μ1 and 
Φ2=2⋅π⋅μ2 are the angle of the action, ⋅μ1 and ⋅μ2 are 
tune shift of the two eigenmodes. The 4x4 matrix P 
transfers the coordinates from the action-angle to the 
laboratory frame. Because of an ambiguity in the 
definition of the eigenmodes phase it is possible to 
choose the elements p12 and p34 in P are both zero. 

The coordinates vector X in the laboratory frame in 
the points 1 and 2 can be connect with transfer matrix 
T1→2  

1212 XTX ⋅= →  
or through the action frame  
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is rotation matrix in the action-angle frame. 
Matrix P can be expressed with Edwards-Teng 

parametrization parameters. 
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Twiss parameters can be calculated from matrix P 
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So, the following procedure for description of the 
particle dynamics in the system with strong 
longitudinal magnetic field can be realized. The first, 
the one-turn transfer matrix M1 is calculated in a fixed 
point 1. The transfer matrices T1→2(s) enables to 
recalculate the one-transfer matrix for the arbitrary 
point of storage ring 

( ) ( ) ( ) 1
21121

−
→→= sTMsTsMring  

With set of the eigenvectors the matrix P is 
computed in the points 1 and s. After that the matrix R 
is calculated in the arbitrary point s of the ring. It 
enables to determine the phase incursion of the two 
eigenmodes. The Twiss parameters α, β, γ, r is 
calculated with standard procedure described in [6]. 

NUMERICAL EXAMPLE 
As an example we consider the storage ring consists 

of four cells and has fourfold symmetry. Each cell 
consists of the bend magnet with the field index n and 
straight section with length l. The longitudinal 
magnetic field is imposed on this structure. The main 
parameters of the storage ring are shown in Table 1. 
The magnetic field is calculated in 3D program for real 
geometry of the coils and magnet yoke. 

Table 1: The main parameters of the storage ring 
Longitudinal magnetic field 25 kG 
Bending magnetic field 3 kG 
Curvature radius 60 cm 
Field index, n 0.5 
Length of the straight section in period 70 cm 
 
The figure 1 shows the phase incursion of the drift 

and cyclotron modes. The straight solenoid doesn’t 
induce the drift motion so the phase incursion of the 
drift mode in this region is zero. In the bending section 
the drift motion is observed induced by the action of 
the bending magnetic field with field index n=0.5. The 
cyclotron mode rotates with practically constant rate. 

 

160

Proceedings of RuPAC 2006, Novosibirsk, Russia



50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

1.2

cm

mrad/cm dΦ1/ds

50 100 150 200 250
0.128

0.129

0.13

0.131

0.132

0.133

0.134

0.135

cm

rad/cm dΦ2/ds

 
Figure 1: Rate of phase incursion for motion of drift and cyclotron modes. 
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Figure 2: β-function of drift and cyclotron modes. 

In our case the values of β-function are not related 
with phase incursion, but it describes only ratio 
between corresponding momentums and coordinates in 
their change during a revolution. Because the pair of 
Larmor circle position is new canonically conjugated 
variables in drift approximation  (the other pair is the 
transversal velocities), so the most convenient 
presentation of β-function is a dimensionless form 
β*=Ksβ. 

The dimensionless β*-function describes either a 
ratio between X and Y sizes of ellipse describing the 
beam shape (pair P1, Q1) or a ratio between vx and vy 
transversal velocities (pair P2, Q2). So, the figure 2 
shows that the field index n=0.5 leads to the drift 
motion along circle. The ratio between transverse 
impulses is closed to 1.  
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Figure 3: Coupling parameter in Edwards-Teng 
parametrization. 

Figure 3 shows the coupling parameter d in 
Edwards-Teng parametrization. This value is very close 
to 1, so the chosen motion modes are practically 
independent. 

CONCLUSION 
The described above procedure enables to use the 

convenient Courant-Snyder parametrization for the 
drift and cyclotron modes at the presence of the strong 
longitudinal magnetic field. This results may be used at 
analysing the electron motion in the cooling device, the 
muon motion in the ionization cooler [7] or another 
system with strong solenoidal coupling [8]. 
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