
EPICS MODULE FOR BECKHOFF ADS PROTOCOL
Jernej Varlec*, Jure Varlec, Žiga Oven, Cosylab d.d., Ljubljana, Slovenia

Abstract
With increasing popularity of Beckhoff devices in scien-

tific projects, there is a rising need for their devices to be
integrated into EPICS control systems. Our customers of-
ten want to use Beckhoff PLCs for applications that must
handle many inputs with fast cycle times. How can we con-
nect Beckhoff devices to EPICS control systems without
sacrificing this performance?

Beckhoff offers multiple possibilities when it comes to
interfacing with their PLCs or industrial PCs, such as Mod-
bus, OPC UA, or ADS protocol. While all of these could
be used for the usual use cases, we believe that for more
data intensive applications, ADS works best. For this rea-
son, Cosylab developed an EPICS device support module
that implements advanced ADS features, such as ADS sum
commands, which provide fast read/write capabilities to
your IOCs.

INTRODUCTION
When designing EPICS device support, there are two

questions one usually considers: how the device support
will communicate with the target devices, and which rep-
resentations of data must be supported.

ADS for Communication
Invented by Beckhoff, Automation Device Specification

(ADS) [1] is an open protocol that is used for interconnect-
ing various Twincat software modules the company pro-
vides, such as event logger, HMI framework, or Twincat
PLC runtimes, among others. These modules are consid-
ered as being independent virtual devices and form a
server/client relationship; an example of this is a field on
the HMI screen getting an update from a Twincat Runtime,
all via ADS.

Within this relationship, as shown in Fig. 1, servers and
clients communicate with ADS request/response messages
which need to be, somehow, routed to the correct ADS de-
vice. This message routing is the responsibility of the AMS
router, which is part of every Beckhoff Twincat device. The
router checks the AMS header part of the message and
reads the target port and address from it. Beckhoff pro-
vides fixed specification, called AMS ports [2], for their

internal software modules. For example, typical Twincat 3
runtime uses AMS port 851.

The AMS ports are the first identifier required for com-
munication within the Twincat system, the second part are
the AMS NetIDs. These look similar to IP addresses with
additional octets appended, and often they are: Users may
find it easiest to just use their device's IP address, and then
append “.1.1”1 to it. Note that the AMS NetID can be
anything, as long as it is unique.

In general, there are two types of ADS communication,
asynchronous and notification. Asynchronous is exactly
what it says on the tin: the client sends the request message
to the server, then continues to operate normally until the
server provides the client with the response, be it success
or error. Notification-based communication, on the other
hand, allows the clients to register themselves to the server,
which then autonomously provides updates when values
client registered change.

Beckhoff provides the ADS client functions in a C++ li-
brary published on Github [3].

IEC 61131-3 Data Types
Another thing to consider is what data types are used by

a Twincat runtime. Twincat supports all the typical data
types one would expect, such as signed an unsigned integer
types up to 64-bit width, 32- and 64-bit floating point num-
bers, support for arrays and strings, pointer and reference
types, and structures. But, since it conforms to the IEC
61131-3 standard [4], it also supports some more 'exotic'
data types, such as 32-bit DATE, DATE_AND_TIME,
TIME_OF_DAY, and their 64-bit versions, and a generic
type, called ANY.

The list of supported types is quite long and supporting
them all could prove to be a challenge. Another thing we
must consider is the data types that EPICS records support.
For example, longin record supports 64-bit signed integers,
which means support for writing 64-bit unsigned types into
this record type could prove to be problematic.

Of course, speed and stability should be considered as
well. One might not think about it much as long their use
case requires mere hundreds of reads or writes at a time,

Figure 1: ADS communication via the Message router. __

* jernej.varlec@cosylab.com

1 .1.1. is used here as a typical example

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 2

Control Systems

THPP2

31

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

but the problem quickly escalates if the number of simul-
taneous reads jumps into four digits; the PLC has to dis-
patch a large number of responses, the message router must
distribute them back to the client, and let's not forget the
messages are distributed using TCP/IP. The overheads
combined can result in severe performance impact, which
can, in turn, result in EPICS scan threads being over-run,
which is not desirable to say the least. And, it turns out, that
speed and stability can go hand in hand.

ADS DEVICE SUPPORT
Autoparam

We solve the problem of supporting a large amount of
data types with AutoparamDriver [5]. This adds a layer of
abstraction above Asyn [6], which simplifies the device
support a bit: one no longer has to write read and write
functions for each Asyn interface. Instead, read and write
function are defined for data types. The ADS device sup-
port only needs to implement the read and write functions
for:
 Integers
 Digital I/O
 Floating point numbers
 Arrays
Data types surrounding time and date are not supported

directly. Inside a Twincat system, these are represented by
DWORD 32-bit unsigned integer type. There is a possibil-
ity of this being implemented at some point when a use
case is identified.

Unsigned 64-bit integers, e.g., LWORD or ULINT, are
also not supported. EPICS records, that would be likely tar-
gets for those types, only support 64-bit signed types.
Sum Commands

ADS C++ library developed by Beckhoff provides
standard read and write methods, which are fine as long as
there aren’t too many requests sent at once. Because the
ability to read thousands of variables and being stable is a
requirement for the ADS device support, plain read and
write methods are not good enough. Thankfully, ADS pro-
vides another option named 'Sum commands' [7], which al-
low us to pack many variables into a single ADS message.
This is similar to what the EPICS Modbus module does,
except it is not limited to 125 16-bit registers. It can theo-
retically read any data type and does not have an upper
limit to how many variables in a chunk it can read. Practi-
cally, there are two limitations:

1. AMS message router can only handle 2048kB of data
in a single message.

2. PLC cannot start another cycle until it resolves all
ADS requests. This means that the PLC CPU can be
stalled if one requests a lot of variables in a single
chunk.

For the above reason, Beckhoff recommends no more
than 500 variables per read, and this is also the default for
the ADS device support. If the EPICS developer knows
that they can afford slower PLC cycle times, they can in-
crease this number at IOC init.

ADS device support implements sum reads as a default
reading option; the device support automatically organizes
all requests from records into chunks, and starts a scan
thread, which continuously retrieves fresh values from the
target PLC. Sum writes are not supported at the moment.

Using the Device Support
In order to use ADS device support, EPICS integrator

needs to know how to interface through EPICS records and
how to initialize the device support through EPICS start-
up script.

EPICS interface, what we could also call Address for-
mat, or Asyn reason, is comprised of the:

1. Data type:
specifies one of the supported PLC data types, e.g.,
USINT, LREAL, BOOL, etc. If the target variable is an
array, append the ‘[]’ to the datatype, except for
strings, e.g., USINT[], LREAL[], STRING.
2. Number of element (if requesting arrays):
is used to specify number of elements for array access,
as well as to specify the length of STRING PLC varia-
bles, e.g., N=25.
3. Operation (ADS command):
specifies if the PLC variable is read (R) or written (W).
4. AMS port:
port in string or numerical format, e.g., P=PLC_TC3
5. ADS variable:
ADS variable name in string format, e.g., V=Main.tem-
perature.
An example, in which one wishes to read a BOOL vari-

able named switchStatus, would be: field(INP, “@asyn(test
0 0) BOOL R P=PLC_TC3 V=switchStatus”)

CONCLUSION
When testing, we wanted to measure the time between

each ADS read and if scan threads are being over-run. We
were testing the ADS device support in the following set-
ting:
 PLC and IOC were in the same network.
 PLC cycle time was set to 10 ms.
 PLC variables being transferred were 64-bit LREAL.
 Number of variables was between 1000 and 10000.
 Around 500 samples were gathered for each SCAN

rate.
As shown in Fig. 2, the device support proved to be sta-

ble at all SCAN rates (tested from .1 to 1 second) for any
number of 64-bit variables up to 10000. Some more time
was required for I/O Intr scan rate, but that appears to be
due to comparing new value with the old one in order to
detect value change.

REFERENCES
[1] Beckhoff ADS, https://infosys.beckhoff.com/eng-

lish.php?content=../content/1033/tcinfosys3/
11291871243.html&id=6446904803799887467

[2] AMS Ports, https://infosys.beckhoff.com/eng-
lish.php?content=../content/1033/tcinfosys3/
11291871243.html&id=6446904803799887467

[3] Beckhoff ADS C++ Library, https://github.com/
Beckhoff/ADS

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 2

THPP2

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

32 Control Systems

[4] IEC 61131-3, https://webstore.iec.ch/
publication/4552

[5] AutoparamDriver, https://epics.cosylab.com/
documentation/autoparamDriver/

[6] Asyn driver, https://epics-modules.github.io/
master/asyn/

[7] ADS sum commands, https://infosys.beckhoff.
com/english.php?content=../content/1033/
tc3_adsdll2/124835083.html&id=

Figure 2: ADS device support test results.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 2

Control Systems

THPP2

33

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

