13th Int. Workshop Emerging Technol. Sci. Facil. Controls
ISBN: 978-3-95450-237-0 ISSN: 2673-5512

PCaPAC2022, Dolni Brezany, (zech Republic

JACoW Publishing
doi:10.18429/JAColl-PCaPAC2022-THPOS

INTEGRATION OF QUENCH DETECTION SOLUTION
INTO FAIR’S FESA CONTROL SYSTEM

Matic Marn, Andrej Debenjak, Cosylab d.d., Ljubljana, Slovenia
Michal Dziewiecki, GSI Helmholtzzentrum fiir Schwerionenforschung, Darmstadt, Germany

Abstract

Facility for Antiproton and Ion Research (FAIR) is go-
ing to make wide use of superconducting magnets for its
components: the SIS100 synchrotron, the Superconducting
Fragment Separator (SFRS) and Atomic, Plasma Physics
and Applications (APPA) experiments. For all these mag-
nets, uniform quench detection (QuD) electronics have been
developed to protect them in case of uncontrolled loss of
superconductivity. The QuD system will contain ca. 1500
electronic units, each having an Ethernet interface for con-
trols, monitoring, data acquisition, and time synchronization.
The units will be grouped into sub-networks of ca. 100 units
and interfaced via dedicated control computers to the acceler-
ator network. The interfacing software used to expose QuD
functions to the FAIR controls framework is implemented
as a Front-End Software Architecture (FESA) class. The
software provides a solution for the constant collection of
the data and monitoring of the system, storing the complete
snapshot in the case a quench event is detected, and prompt
notification of a quench to other components of the FAIR
facility. The software is developed with special attention to
robustness and reliability.

INTRODUCTION

Quench (uncontrolled superconductivity loss) events are
considered a major threat in superconductor technology. Dur-
ing a quench of a superconducting magnet, the energy stored
in the magnetic field is rapidly released in the quench area,
which may cause severe damage. However, damage can be
avoided by quench protection devices like quench heaters
or dumping resistors. To activate them right in time, QuD
systems are used.

FAIR’s SIS100 synchrotron, the SFRS and APPA will
employ a number of superconducting magnets for their op-
eration [1]. For these magnets, voltage-measurement-based
QuD methods are utilized: direct voltage measurement for
current leads, bridge measurement for high-current magnets
and pickup coils for low-current magnets [2]. Voltages over
all superconducting components are monitored, mostly re-
dundantly, by assigned QuD units. Each unit consists of a
custom analog front-end (specific for each monitored part
type), a set of comparators (quench detection relies on com-
paring acquired signals against pre-programmed thresholds),
and circuitry for device control and data acquisition.

The data acquisition feature is not involved in quench de-
tection itself, but collecting signals allows in-depth analysis
of magnet operation and ’post-mortem’ data are crucial for
understanding magnet failures once they occur.

Control Systems

FAIR’s control system is FESA-based, and the integration
of the QuD units is done via a FESA class. The QuD FESA
class was designed to control up to 96 QuD units by a single
equipment class, however, there is no technical limitation to
extend this number further as far as enough processing and
memory resources are allocated to the hosting computer.

FESA is a C++ framework used for developing real-time
(RT) software for devices that have to be integrated into a
control system — software that controls and monitors acceler-
ator equipment and performs data acquisition. It comes with
a rich environment for designing, developing, deploying,
and testing. It offers wide possibilities in data acquisition,
data handling, and standardized generic interfaces called
properties, which can be specified for each device being
integrated. An acquisition property allows for acquired data
to be published (i.e., notified) to the users, while command
and setting properties facilitate the user to provide input to a
FESA class. In addition, FESA provides tight and seamless
integration of the FAIR’s White Rabbit [3] timing system
and focuses on real-time execution.

FAIR QUENCH DETECTION UNITS

Each QuD unit can be divided into two parts: the analog
QuD circuitry (which is virtually independent of the control
system or any other high-level electronics) and a module
for device control and data acquisition. The latter is built
around a Cyclone IV FPGA and runs a NIOS-II soft-core
with FreeRTOS-based software. Its functions range from
simple operations (like remote forcing or resetting of the
quench signal) through controlling quench thresholds to
continuous 10kHz signal acquisition. Further, it provides
numerous diagnostics features and remote updates.

Digital Interface

All units are controlled via a fast Ethernet interface run-
ning multiple protocols on top of IP v.4. For generic device
control, the Simplified Universal Serial Interface (SUSI) pro-
tocol [4] has been developed, which utilizes a variable size
register model for device programming. For data download,
a custom real-time data transfer protocol has been imple-
mented directly in FPGA hardware to offload the softcore.
Further, some generic protocols (DHCP, mDNS) are used
to support IP connectivity.

It’s worth noting that the quench signal is transmitted over
a dedicated digital line and it’s independent of the network
interface.

THPOS
59

@©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI



©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

13th Int. Workshop Emerging Technol. Sci. Facil. Controls
ISBN: 978-3-95450-237-0

Data Format

QuD units sample 8 channels of analog data with a nomi-
nal frequency of 10 kHz along with further 16 binary status
signals. These are packed into frames consisting of 64 sam-
ples and a summary. The summary contains mean values of
analog channels, a snapshot of the binary status, measured
quench threshold values, frame number, and last but not
least, its timestamp. Each frame counts 1328 bytes which
fit into a single UDP frame, allowing easy and efficient data
transmission.

Time Synchronization

Local data timestamping is used to synchronize streams
coming from QuD units. Timestamps are added to data at the
earliest possible stage in the unit hardware rather than in the
global data aggregator. This way effects of random delays on
the network are eliminated. To provide this, all units must be
equipped with local clocks and they must be synchronized
to an external global clock. The synchronization is achieved
utilizing the Precision Time Protocol (PTP).

Internally, units use sample and frame triggers to control
the data acquisition. These triggers can be free-running or
synchronized to the global clock. In the latter case, frames
coming from all synchronized units will have the same times-
tamps, which makes data aggregation much easier.

SYSTEM OUTLINE

Hardware Arrangement

QuD units are logically (and mostly also physically)
grouped into subsets of up to 96 units with a single con-
trol server. The local network between the server and units
is isolated from the general accelerator network so that direct
access to units from outside is not possible. Each server runs
an instance of a dedicated FESA class as described below to
provide QuD control and data acquisition.

FESA Architecture

To integrate the QuD units into the FAIR control system
a FESA class application was designed. The class supports
real-time data acquisition from all the units which stream
the data by User Datagram Protocol (UDP) packets. The
class periodically monitors the units and subscribes or unsub-
scribes from the unit data streams based on the operational
status of each unit. This design allows robust and reliable
data availability. The data must be made available to any
FESA client for a certain amount of time after it has been
acquired. For that reason, once the data is received it is put
inside a First-In, First-Out (FIFO) data acquisition (DAQ)
buffer which supports a single-write-multiple-read interface
with minimal locking required for synchronization. The data
is available on demand as either raw frame data or processed
scaled data until it is overwritten in the buffer. The data is
also made available to the interested clients continuously
as it is received at a 10 Hz update rate. The class monitors
received data and as soon as a quench event is detected on
one of the units it signals an interlock to the FAIR interlock

THPO5
60

PCaPAC2022, Dolni Brezany, (zech Republic
ISSN: 2673-5512

JACoW Publishing
doi:10.18429/JAColl-PCaPAC2022-THPOS

system. In addition to the DAQ capabilities, the QuD FESA
class also provides command and setting properties for the
user to setup and configure the QuD units.

Even though each QuD FESA class instance interacts with
up to 96 QuD units, the FESA class only implements one
software device-instance. While from the FESA perspective
it would be most appropriate that one device-instance rep-
resents one QuD unit, this is not the case for this particular
implementation. With the complete QuD system containing
around 1500 QuD units and each unit being represented by
a corresponding FESA device instance, this would intro-
duce a large amount of FESA software devices to the control
network which is inconvenient and unbefitting.

IMPLEMENTATION DETAILS
DAQ Buffer

The QuD FESA class receives the real-time data from up
to 96 QuD units. The data needs to be aggregated, aligned,
and stored for a predefined period (typically several minutes).
The rate of received data is substantial and was one of the
main aspects affecting the overall design of the buffer.

The whole buffer is pre-allocated in advance to avoid
expensive memory allocations and moves during run-time.
Memory for individual units is located in a continuous fash-
ion to increase locality and reduce the number of cache
misses.

Data from different units are time-aligned by the times-
tamp of the frames. For the frame to be inserted into the
buffer the timestamp has to match exactly. This means all
the units need to be configured to use the global clock as a
trigger reference.

Performance tests have shown that a single writer thread
can easily handle the expected load so the buffer is designed
to be used by a single writer thread. This way, the synchro-
nization between multiple writers is avoided.

The buffer is split into sections called blocks. Each block
consists of multiple DAQ frames. At any time, the data may
be written into the buffer only in the sliding writer window
which is 2-block wide. When the data is written one block
past the writing window the window slides by one block
forward to include the new block. The old block which is no
longer included in the writing window may not be written
to anymore and may be read from.

Reader threads do not block the writer thread while they
are reading the data. This is achieved by the reader threads
reading the current position of the writing window before
and after the data was read. With that, the reader thread
can determine if the data was overwritten while being read.
Reading and updating the writer window position is syn-
chronized with a mutex lock, which affects the performance
negligibly.

Communication Sockets

The QuD FESA class implements two types of sockets
to communicate with units. First, a general purpose SUSI
socket is used to write to and read from a QuD unit. The

Control Systems



13th Int. Workshop Emerging Technol. Sci. Facil. Controls
ISBN: 978-3-95450-237-0

communication is entirely done using UDP packets with
two-way communication for each interaction. Appropriate
synchronization mutex is used to make sure that each interac-
tion is correctly handled. The second implemented socket is
a real-time socket which is only used to receive the streamed
real-time data. It exposes the Linux socket file-descriptor
which allows to efficiently poll for new data for all units.

Data Acquisition

A FESA custom event source is used to receive the
streamed real-time data. When an acquisition start com-
mand is sent to the QuD units, they start streaming UDP
packets containing the real-time data. Due to the relatively
large number of units and to improve the performance, the
Linux poll command is used. Whenever one of the sockets
has available data, the data is read, deserialized to a DAQ
frame structure, and put inside the DAQ buffer. As soon as
a new block is written into the DAQ buffer, the custom event
source triggers the acquisition RT action. Before adding
the frame to the buffer, it is also checked whether a quench
status flag is set. If that is the case, the quench handling RT
action is immediately triggered. The custom event source
thread only does the absolutely most critical work required
and other less time-sensitive operations are handled in other
lower-priority threads.

Data Processing

Some data acquisition modes require the data to be pro-
cessed before being sent to the interested clients. There
are two processing procedures implemented. Namely, the
data may be decimated and scaled. For decimation, a user-
specified number of data samples is averaged. For scaling,
the data can be scaled from raw ADC values to volts accord-
ing to preset calibration coeflicients.

Data Acquisition Modes

QuD data is acquired in the form of raw DAQ frames,
deserialized, and stored in the DAQ buffer. It resides in
the buffer until it is requested by the user or a continuous
notification is triggered. Three modes of publishing the data,
are supported i.e., Raw, Continuous and Post-mortem.

Raw UDP packet data (bytes), can be requested with Ge-
tRawData command FESA property. The user has to supply
the timestamp of the first frame of interest and the number of
frames required. As long as the requested data is available
in the DAQ buffer, it is serialized back to raw bytes and sent
to the user.

In addition to the raw data, the user can subscribe to con-
tinuous data notifications. This allows getting a continuous
stream at 10 Hz update rate. The data is decimated and
scaled to Volts before sending to the user.

The last available data acquisition mode is post-mortem
acquisition. Since a quench event may be triggered at any
time, it is paramount for the post-mortem analysis to have
access to the acquired data before and after the quench hap-
pened. In this case, the user may request the post-mortem
data with the GetPostMortemData command property. The

Control Systems

PCaPAC2022, Dolni Brezany, (zech Republic
ISSN: 2673-5512

JACoW Publishing
doi:10.18429/JAColl-PCaPAC2022-THPOS

user supplies the timestamp of the first frame of interest and
the number of frames. The data is read from the DAQ buffer,
scaled, and sent to the user.

Robustness and Reliability

A single class instance works with multiple units. One
or more malfunctioning units should not degrade the perfor-
mance of the class or the ability to use other units.

To achieve the desired reliability, a health monitoring
system is implemented. The QuD FESA class maintains
internal statistics of the received data frames. With each
received packet the statistics are updated. These statistics
are then periodically monitored and appropriate action is
taken for each unit in case of detected misbehavior. For ex-
ample, when a unit is correctly configured and is not sending
data when it should, the acquisition is restarted on the unit.
Similarly, when the unit is misconfigured and is sending
data, the acquisition is stopped on the unit, since the sent
data is considered invalid. In addition, periodical checks
are implemented that units are correctly synchronized and
configured at all times.

Each unit can be masked (i.e., easily excluded from the
system), in case there is some issue with the unit that cannot
be fixed remotely and physical interaction is required. When
a unit is masked it effectively means that it is ignored by the
QuD FESA class and as such the unit is not operational.

Standard DAQ API

The class exposes the acquired data via the FAIR stan-
dardized DAQ Application Programming Interface (API).
This allows a common client Graphical User Interface (GUI)
implementation to be used across multiple FAIR accelerator
control solutions.

CONCLUSION

QuD units are an essential part of preventing damage to
the accelerator devices in case of a quench event. As such
they are integrated into the FESA control system. Care is
taken to provide a performant, robust and reliable solution.
At the same time, the implementation offers the user full
access to the settings and configuration of the QuD units.
Data acquired from the QuD units is buffered, processed,
and made available to interested FESA clients.

REFERENCES

[1] W.F. Henning, “FAIR - an International Accelerator Facility
for Research With Ions and Antiprotons”, in Proc. EPAC’04,
Lucerne, Switzerland, paper TUXCHO02, pp. 50-53, July 2004.

P. Szwanguber et al., “Study on Mutual-Inductance-Based
Quench Detector Dedicated to Corrector Magnets of SIS100”,
IEEE Trans. Appl. Supercond., vol. 29, nr. 4, pp. 1-5, 2019.
doi:10.1109/TASC.2019.2896139

The White Rabbit Project - official web page, August 2022.
https://white-rabbit.web.cern.ch

(2]

(3]

(4]

M. Dziewiecki, “Quench Detection System Developer’s Hand-
book”, Internal GSI document, Darmstadt, 2022.

THPOS
61

@©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI



