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Abstract
Building a control system for a scientific facility is a com-

plex process that requires significant time coordination and
the cooperation of hundreds of people. The latest of our
control system for the 10 J 100 Hz laser system happened to
be built when access to the lab was far more difficult, due
to the pandemic: travel was much more complex, and local
restrictions at one point prevented a large number of peo-
ple from being in the lab simultaneously. This paper shows
how, despite the demanding working conditions, we built
the control system for the 10 J 100 Hz laser. The control
system was designed in collaboration with CLF (Central
Laser Facility, Science and Technology Facilities Council,
UK) and HiLASE (Institute of Physics, Czech Academy of
Sciences). The process of building the laser control system
was divided into stages and we had to rely on remote work-
ing. This article discusses how we adapted each stage to
work remotely, what tools we used, how we minimized risks,
and what we would have done differently if we had started
from scratch.

INTRODUCTION
This paper has been written to share the methods and

tools used to build a control system for the 100 Hz 10 J
laser system built in collaboration with CLF (Central Laser
Facility, Science and Technology Facilities Council, UK) and
HiLASE (Institute of Physics, Czech Academy of Sciences).
The paper aims to share findings and processes, and evaluate
risk awareness.

REMOTE WORK
The main engineering effort started shortly after the first

wave of pandemic restrictions, thus making it impossible to
work directly in the laboratory. Experience with previous
deployments was leveraged, and it was decided that the core
integration layer be built remotely without accessing the
actual devices. This approach was possible because proper
software practices were followed from the beginning, such
as: expressive documentation, simulation of various system
components, continuous integration during development,
automation of repeatable tasks and open communication
with stakeholders. All of these aspects will be discussed
below.

RISK MITIGATION
Building a scientific system is an arduous and lengthy pro-

cess. It can be broken down into individual stages, including
design, tendering, subsystem construction and equipment in-
tegration. The process ends with the implementation of the
control system and functional testing of the entire system.
∗ marcin.lukaszewski@e9controls.com

However, problems with tenders, broken supply chains
and other factors affecting the work process, which are not
the subject of this article, cause numerous delays that in-
crease the risk of error during integration and negatively
affect the developer experience.

To mitigate the risks arising from delays, several strate-
gies have been implemented to react effectively in a rapidly
changing environment. It should be noted that a large pro-
portion of the problems that arise during the development
of software for controlling equipment are due to a lack of
adequate information or late acquisition of such information.

Involvement Therefore, it is essential to participate in
the design work, where the parameters of each device are
detailed. At this point, each change is "cheap and easy"
to make, which provides an opportunity for finding errors
regarding device communication and with possible impact
on the quality of the integration of devices into the control
system.

Regular Contact Also, direct and regular contact with
equipment suppliers allows changes in the control software
to be tracked, potentially affecting the integration efforts.

Device Grouping Off-the-shelf equipment that was
widely available, or was from large suppliers was given the
lowest priority. It was assumed that basic integration for
these devices would be available in the environment or that
the system would be relatively simple to build, given the
availability of documentation.

Devices used in the past, or with similar functionality to
those already deployed were given medium priority. It was
assumed highly likely that software for such devices either
already existed in the community, or could be used after
modification.

The highest priority was given to new equipment, which
was previously unknown and also from suppliers unfamil-
iar to the laboratory. Equipment from small suppliers was
also included in this group. These devices were integrated
first, which resulted in the broadest possible time window to
develop a working version.

INFRASTRUCTURE
Production Environment – Laboratory

The control system infrastructure in the laboratory con-
sists of five powerful servers that control data collection and
devices. The servers are connected via a high-speed Ether-
net network to which all devices in the system are connected.
The servers run under Linux Ubuntu LTS. The software con-
trolling the system is based on the Experimental Physics and
Industrial Control System (EPICS) framework, described
later in this article. The lab has other systems with a similar
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framework, so it was decided to build a system with similar
functionality to reduce maintenance efforts.

Staging Environment
By definition, the staging environment should replicate

the production environment - the laboratory set-up. A stag-
ing site’s main purpose is to ensure that all new changes
are working as intended before they are deployed on the
production servers [1]. With this approach we can limit to a
minimum the risk of any software failure in the laboratory
environment. At this stage we can detect any memory leaks,
excessive CPU or RAM usage or just wrong functioning of
the software.

The biggest challenge was to reflect the devices that the
laser control system is composed of. To do it, we decided
to write custom simulators. Their role was to emulate the
connection protocols and behaviour of the specific devices.
The emulators allow for IOC functioning verification. Fur-
thermore, the staging environment contains the exact copy
of the production monitoring and archiving infrastructure.

Testing Environment
The main task of the test servers is to build and perform

test executions of the newly created software components.
In terms of the control system software for the 100 Hz laser
facility, it was crucial to test all EPICS components - IOCs.
In the beginning, two test servers were established using
one of the cloud providers. They contained all the necessary
software to build EPICS together with support modules and
to run/ and test IOCs. The custom tool launches IOCs and
sets and reads values of PVs.

To be sure that each IOC has been evaluated successfully,
we integrated them with Gitlab Continuous Integration (CI)
pipelines. Once a new commit appears in the IOC repository,
the GitLab shared runner copies the code, builds it, and runs
tests on one of the servers.

Beacuse most of the time, the servers have been waiting
for new commits and desire to limit costs, we decided to
use Docker images containing test tools and the EPICS en-
vironment in GitLab and run new commit changes inside
the containers. The main disadvantage of this approach is
the total test time. GitLab needs time to download images
and all dependencies for each test, so it takes more time to
perform all of the actions. Nevertheless, it is not the most
important feature for users. It is still acceptable if a test
takes from 15 to 30 seconds. Thanks to that approach we
do not need to maintain remote servers and we can apply
the Infrastructure as Code (IaC) idea, which is the whole
configuration in Dockerfile.

EPICS
EPICS is a software framework that provides a set of toolk-

its destined for designing distributed control systems. It is
widely used in large experiments like particle accelerators
and telescopes, as well as smaller infrastructures such as
lasers or industry systems. EPICS employs Client/Server

and Publish/Subscribe mechanisms to handle communica-
tions between the various computers. The typical EPICS
architecture of the control system is organized in a way that a
group of servers - IOCs perform real-time actions (e.g. data
acquisitions) and then, using dedicated network protocols,
Channel Access (CA), or its newer and faster implementa-
tion PV Access (PVA), the data are published to subscribed
clients [2, 3].

Compared with other control system packages, EPICS
does not model control system devices as objects but rather
as data entities that describe a single aspect of the process
or device under control, thus the name Process Variable
(PV) [2].

EPICS is open-source software and one of its main ad-
vantages is the community that constantly improves it and
creates helper tools that facilitate control system develop-
ment and EPICS integration.

DEVICE SIMULATORS

Device simulators are a key element of the testing and
staging environments. They allow for IOC tests in the cases
of communication protocols and functional tests. This is a
crucial aspect in terms of remote IOC development without
physical equipment. Based on the documentation we can
test the communication and how the IOC should behave in
advance.

We chose to use Lewis. This is a Python package that
makes it easy to develop complex stateful device simulations
[4]. It supports basic industrial communication protocols
like TCP and Modbus and it can establish an EPICS server
to expose PVs with device parameters. The package does
not support custom communication protocols or low-level
drivers, but the 100 Hz laser control system is based on
devices with standard protocols TCP (e.g. laser rack, delay
generator), Modbus (e.g. PLC), or EPICS interface (e.g.
Front-End ModBox) [4].

It is worth mentioning that it is not always possible to
simulate all the device states’. In most cases, it is more
than enough if we can emulate and test the communication
between an IOC and a simulator. After that, when there is a
possibility to examine an IOC with a real device, it is much
easier and faster to implement the IOC parts corresponding
to the device states and behavior while having the proper
communication ready. That is why there usually is no need
to browse and study the documentation to investigate how
the device behaves.

In the described 100 Hz laser infrastructure, the Lewis
simulators are used to test IOCs in GitLab CI pipelines.
Inside the Docker image, the custom tool launches the IOCs
with the corresponding Lewis simulators and performs test
cases described in the YAML configuration file. In the
staging environment, the simulators are launched together
with the IOCs to reflect the laboratory setup.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H O 1 1

THO11

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

16 Control Systems



Figure 1: Diagram showing the relationships between the various elements of the system.

AUTOMATION AND CI/CD

Automation is an important aspect of modern IT (informa-
tion technology) infrastructure. It is the process of creating
software and systems to perform repeatable actions and re-
place or reduce manual intervention. Its main advantage is
the acceleration of IT infrastructure delivery by automating
processes that previously required a human touch [5].

To limit the risk of mistakes and ease long-term mainte-
nance, we have automated almost all processes: infrastruc-
ture build, testing, deployment, and monitoring. This has
drastically minimized human engagement, increased system
responsiveness, and improved user experience.

Continuous integration is a coding philosophy and set
of practices that drives development teams to frequently
implement small code changes and check them into a version
control repository [6]. We have applied CI practices to IOC
testing. Each commit is verified in terms of syntax rules,
formatting, and functional tests being performed.

Continuous delivery picks up where continuous integra-
tion ends and automates application delivery to selected
environments. It is an automated way to push code changes
to any environment [7]. We have designed the workflow
that tests IOCs and when a new commit appears in the mas-
ter branch, deploys them to the staging environment. It is
presented in the Fig. 1.

Building Infrastructure

To avoid manual server configuration and to facilitate
server management, we decided to employ Ansible. For
each environment (staging and production) there is a specific
playbook with the corresponding list of hosts and variables
to set up the proper configuration, i.e. network settings,
installation of all required software, and starting of needed
processes. The Ansible playbooks are also the infrastructure
documentation, and thanks to them, it is easier to follow any
configuration modifications.

For tests, the Docker image has been designed. It contains
the EPICS framework and all the tools to perform tests inside
the container when the GitLab CI pipeline is launched.

Tests
As mentioned in the previous section, the tests are made

automatically, after each new commit in the repository. They
are performed using GitLab CI pipelines together with cus-
tom Docker images, and they are divided into several jobs.
The first one checks if all needed files are available - files
describing test cases, IOC, and simulator directories. Then,
the IOC database files are validated in terms of syntax errors.
After that, the IOC is built and installed. The last step is the
functional tests. Using the YAML configuration file with the
test cases (modify set point value and verify its readback, or
check if the PV value has changed over a defined time), the
custom called ’ioc-test’ performs functional tests by launch-
ing IOC together with the simulator and setting and reading
PVs characterized in the YAML file.

Deployment
If the IOC tests have been finished successfully, the GitLab

CI triggers the deployment job. Its role is to launch the
Ansible playbook with the IOC deployment procedure based
on the source of the trigger (IOC type). The Ansible role
checks if there is a new IOC version in its repository. If
yes, it installs it on the staging server together with a new
simulator instance. The IOC is automatically added to the
monitoring and achiever engine. This is a user who decides
when to start the new IOC. We want to avoid running the
same IOC in two various versions and users receiving alarms
from the killed, old IOC version during deployment.

MONITORING
System and application monitoring is a vital IT function

that has a wide range of benefits for various businesses and
facilities. It can save money on network performance, em-
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ployee productivity, and infrastructure costs, and it is far
more strategic than its name implies [8].

The monitoring can be divided into basic types depending
on their purpose:

1. Availability monitoring, which concerns server man-
agement and services status;

2. Web and network performance monitoring, which are
tools that can detect excessive network load, a high
number of requests to a single service, or any network
bottleneck; and

3. Application monitoring, which tracks the performance
of an application and spots any issues before they cause
service failure [9].

An effective monitoring system has many features from
which developers and infrastructure users can profit. Moni-
toring services can not only prevent incidents but also allow
you to detect them faster when they do happen. Fast incident
detection results in time and money savings. Monitoring
servers and systems improve the use of the hardware [8]. We
can take advantage of all hardware resources if we know that
they are in the operational state. We can predict network
traffic or excessive CPU usage by some of the applications
or services and try to optimize hardware architecture. In
terms of early issue detection, it is important to provide a
real-time notification [8]. They will not only alert you about
performance issues but also make it easy for you to resolve
those issues. It can be done via emails, text messages, or
any other integration with communication applications (e.g.
Slack). Finally, effective monitoring enhances the end-user
experience. If infrastructure is slow, it will result in many
support calls from end users. Delivering top-of-the-line IT-
enabled services can improve the productivity of the systems
and increase the number of satisfied end users [8, 10].

Laser Monitoring System
The designed monitoring system is composed of many

elements for both servers and IOC monitoring. We have
created the custom Go client that uses CA protocol (using
the specially designed Go implementation of EPICS CA
library) that monitors PVs from the IOC. We focused on
PVs from the IocStats module like IOC CPU, RAM usage
and Heartbeat, which informs about IOC state, but also PVs
that inform about the connection state between IOC and the
device (asynRecord) and some IOC-specific PVs like the
number of acquired frames from camera IOC. The Go client
exposes metrics about the number of monitoring PVs and
their state (connected/disconnected).

The client sends data to VictoriaMetrics. It is an open-
source data series database typically used for processing high
volumes of data and for long-term data storage [11]. It uses
10x less RAM than InfluxDB and up to 7x less RAM than
Prometheus, Thanos, or Cortex when dealing with millions
of unique time series. It can be used as a drop-in replacement
for Prometheus because it supports Prometheus querying
API [11].

For visualisation, we chose yet another open-source tool -
Grafana. It helps to create queries and visualize application

performance metrics with customized data. The tool lets
one create monitoring dashboards for metrics over a specific
period, so it can easily be adapted for a specific project [12].

To monitor the hardware, we decided to use the
Prometheus node exporter, which exposes metrics with all
essential server parameters. Those are scraped directly to
VictoriaMetrics and visualized on the available dashboard
templates prepared by the community.

The alerting system is based on the Prometheus Alertman-
ager and vmalert. We prepared a set of alert rules in PromQl
about hardware metrics and IOC metrics - for example, an
alert should be raised when the IOC heartbeat stops growing
or when the PV with the device connection state changes its
value. To provide real-time messages we redirected alarms
to one of the Slack channels. In the error message, one can
see the level of the alert (error, warning, resolved), the met-
ric name and its value, the host origin, and a short metric
description.

DOCUMENTATION
Documentation is an essential part of building control

systems, regardless of whether the build is based on remote
working or a traditional build. In designing the documenta-
tion, we have tried to follow current trends to ensure is easily
accessible, is up-to-date, covers as much context as possible,
and is easily maintainable and modifiable in the future.

Key elements of the system have been recorded in the
form of Architecture Decision Record (ADR) documents,
which contain important architectural decisions together
with context and consequences. Each document has a num-
ber and relates to the one problem it describes. Examples of
such documents include those describing the network in the
system or the EPICS PV naming scheme.

Another important documentation element is a network
map with addresses and information on the location of in-
dividual servers and computers used to operate the system.
All logins and passwords are stored in a password manager.

A document containing information on each device used
in the system is also essential. This includes information on
the device, the manual, and contact with the people respon-
sible for the software on the supplier end.

Information about what software is running on which
server is contained in the deployment configuration files,
which are an integral part of the main repository with the
system code. Hence, additional documentation of these is
not necessary.

CONCLUSIONS
We have successfully delivered the fully operational in-

frastructure for the 100 Hz laser control system. It follows
modern management practices (CI/CD, IaC, multiple en-
vironments) and limits human intervention to a minimum
by general automation of the processes. Automated IOC
testing, together with unmanned deployment to the staging
environment, makes the control system less prone to errors
and allows for fast integration with existing applications.
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Thanks to the monitoring that covers not only server pa-
rameters but also IOC statistics, we can effectively react
to failures and try to prevent them. We have proved that
the research infrastructure can be similar to state-of-the-art
bank applications or web applications in terms of testing,
deployment, and monitoring.

There are still areas that we are working on and trying to
improve. We are currently developing our implementation of
the device simulators. Since the internal state of the device
is not a crucial part of the simulators from a testing point
of view, we decided to limit that aspect and focus on easier
protocol implementation that would allow a user to describe
any non-standard communication type. This will make IOC
testing less time-consuming and more effective. What is
more, together with laser scientists, we are developing more
user-friendly monitoring dashboards, benefiting from their
knowledge and experience.
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