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Web2cToolkit Web Service Collection 

The Web2cToolkit is a collection of Web services, i.e. servlet 

applications and the corresponding Web browser applications, including 

Viewer: 

• Web2cViewerWizard 

• Web2cArchiveViewer 

Graphical GUI-Bilder: 

• Web2cViewerWizard 

• Web2cArchiveViewer 

Mobile Framework: 

• Web2cToGo 

Miscellaneous: 

• Web2cGateway 

• Web2cManager 

The Web2cToolkit provides interfaces to major 

accelerator and beam line control systems including 

TINE,  DOOCS,  EPICS (via DOOCS) TANGO and  

STARS. 
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Web2cHMI (1/2) 
 

Web2cHMI is a Web-based, platform-neutral, single-user human machine 

interface which seamlessly combines actions based on various modalities 

provided by input devices commonly available from the consumer market.  

 

Web3cToGo is a test environment for Web2cHMI. 

 

Web2cHMI is implemented in JavaScript. 

 

Web2cHMI supports various user input devices including 

• Mouse 

• Touch-sensitive display 

• Leap motion controller 

• Myo gesture control armband 

• Epson Moverio BT-200 smart glass 

• Vuzix M100 smart glass 

• Microphone 
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Web2cHMI (2/2) 

All input modalities supported can be used simultaneously including 

• 1D/2D at gestures including single- and multi-finger 

• gestures, 

• 2D/3D spatial gestures including hand and arm gestures, 

• 3D head movements including yaw, pitch and roll 

• English spoken commands. 

 

 

The speech recognition system knows a Web2cHMI-specific vocabulary listed 

in a dictionary such as “Browse Up" or “Lot More". 
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Gestures 

Web2cHMI recognizes various primitive gestures, i.e. input device-specific 

gestures including 

• Mouse: Click, Move 

• Touch-sensitive display: Tap, Move / Swipe, Pinch (two fingers) 

• Leap motion controller: Key-Tap, Swipe, Open-Hand, Closed-Hand, Circle 

• Myo gesture control armband: Double-Tap, Wave-Out / Wave-In, Fingers-

Spread, Fist 

• Smart glass: Move-Fast / Move-Slow, Roll 

 

In addition, enriched gestures formed by primitive gestures followed by linear 

movements or rotations etc. are supported. Examples are Fingers-Spread & 

Clockwise Rotation or Sideward-Left Long Swipe. 

Problem: Reliable detection of arm, hand, finger or head  movements of 

enriched gestures 
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Supervised ML Gesture Recognition 
Workflow 

Important: Use the same pre-processing and feature extraction algorithms 

for both training and real time prediction. 
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Workflow Steps 
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Recording Sensor Data / Pre-Processing 
 

Pre-Processing:  
 

Cleanse the sensor data (reducing noise, removing outliers, …) 

Recording Sensor Data:  
 

Record continuously the 

position of the input device 

in both cartesian (X, Y) and 

polar (R, PHI) coordinates 

resulting from 

 

• Finger movements, 

• Hand movements,  

• Arm movements or 

• Head  movements 
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Workflow Steps 
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Feature Extraction 
 
Reduces the dimension of the gesture 

recognition task. 
 

For each coordinate orientation 

(horizontal, vertical , polar angle) 

• Implement a non-linear regression 

(Nelder-Mead Simplex method) to fit 

consecutive 333 ms long time 

sequences of sensor data to a pre-

defined mathematical model  

• Find start / end time and start / end 

position of movement (features), 

• Calculate duration and length of 

gesture if feature values are confined 

within reasonable limits. 

 

Non-Linear Regression Model 

 

t ≤ tstart:          f(t) = sstart 

tstart < t < tend: f(t) = sstart  + ((send – sstart) / (tend – tstart) * (t – tstart)) 

t ≥ tend:           f(t) = send 
 

 



Page 12 

Workflow Steps 
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Trained Model 

Training the Algorithm by Supervised Learning 

 

Generate sets (clusters) of learned data (real or simulated) representing 

• Long-Slow movements, 

• Long-Fast movements, 

• Short-Slow movements, 

• Short-Fast movements. 
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Workflow Steps 
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Classification (1/2) 

Gesture Orientation 

 

Define gesture orientation (left / right linear movement, up / down linear 

movement, clockwise / counter clockwise circular movement) using 

feature values (tstart, tend, sstart, send) found. 
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Classification (2/2) 

Gesture Type (k-Nearest Neighbor Analysis). 

 

Define proper gesture label (long-slow, long-fast, short-slow, short-fast) by 

classifying the gesture duration (tend – tstart) / gesture length (send – sstart) 

values found (red / blue dots) using the memorized learned data sets (k = 3) 
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Summary 
 

Status: 

• Is working pretty well. 

• Is still work in progress. 

 

Open questions: 

• Input data: 

• How does the quality (i.e. pointing stability) of sensor data affects 

the prediction quality?  

• Feature extraction:  

• Is the non-linear regression the appropriate method?  

• Classification:  

• Is the k-nearest neighbor analysis the right method?  

• Which prediction accuracy can be achieved? 

• Trained Model: 

• How does the prediction perform with real instead of simulated 

trained data? 

 
http://web2ctoolkit.desy.de 



Thank you 

Sun rise at Mt. Jade (3.952 m), October 10th 2018 


