Improving Web2cHMI Gesture Recognition Using Machine Learning

Reinhard Bacher DESY, Hamburg, Germany

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Table of Contents

- Web2cToolkit:
 - Brief overview
- Web2cHMI:
 - Brief overview
- Supervised ML Use Case:
 - Movement recognition
- Summary:
 - Status
 - Open questions

Web2cToolkit Web Service Collection

The Web2cToolkit is a collection of Web services, i.e. servlet applications and the corresponding Web browser applications, including

Viewer:

- Web2cViewerWizard
- Web2cArchiveViewer

Graphical GUI-Bilder:

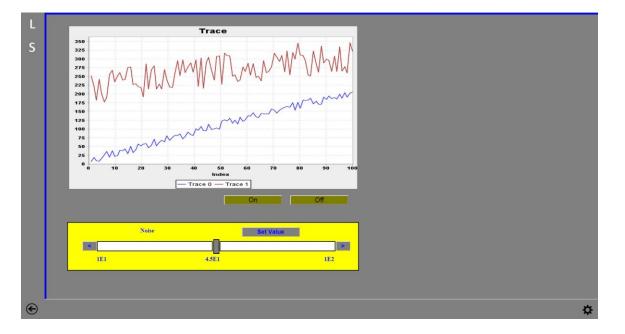
- Web2cViewerWizard
- Web2cArchiveViewer

Mobile Framework:

• Web2cToGo

Miscellaneous:

- Web2cGateway
- Web2cManager



The *Web2cToolkit* provides interfaces to major accelerator and beam line control systems including TINE, DOOCS, EPICS (via DOOCS) TANGO and STARS.

Web2cHMI is a Web-based, platform-neutral, single-user human machine interface which seamlessly combines actions based on various modalities provided by input devices commonly available from the consumer market.

Web3cToGo is a test environment for Web2cHMI.

Web2cHMI is implemented in JavaScript.

Web2cHMI supports various user input devices including

- Mouse
- Touch-sensitive display
- Leap motion controller
- Myo gesture control armband
- Epson Moverio BT-200 smart glass
- Vuzix M100 smart glass
- Microphone

Web2cHMI (2/2)

All input modalities supported can be used simultaneously including

- 1D/2D at gestures including single- and multi-finger
- gestures,
- 2D/3D spatial gestures including hand and arm gestures,
- 3D head movements including yaw, pitch and roll
- English spoken commands.

The speech recognition system knows a *Web2cHMI*-specific vocabulary listed in a dictionary such as "Browse Up" or "Lot More".

Gestures

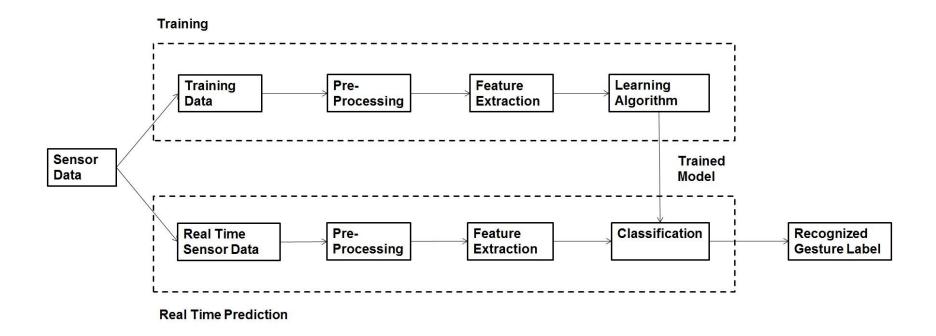
Web2cHMI recognizes various **primitive gestures**, i.e. input device-specific gestures including

- Mouse: Click, Move
- Touch-sensitive display: Tap, Move / Swipe, Pinch (two fingers)
- Leap motion controller: Key-Tap, Swipe, Open-Hand, Closed-Hand, Circle
- Myo gesture control armband: Double-Tap, Wave-Out / Wave-In, Fingers-Spread, Fist
- Smart glass: Move-Fast / Move-Slow, Roll

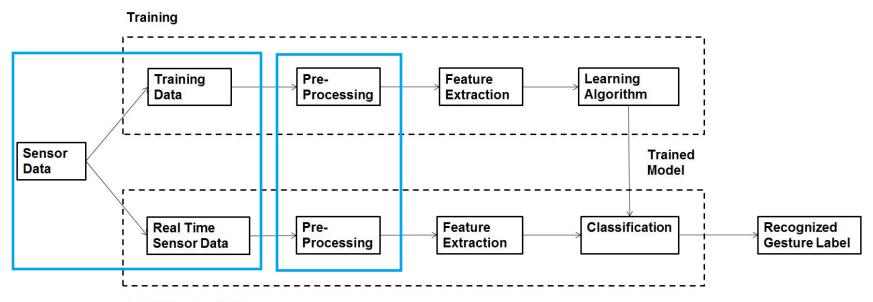
In addition, **enriched gestures** formed by primitive gestures followed by linear movements or rotations etc. are supported. Examples are Fingers-Spread & Clockwise Rotation or Sideward-Left Long Swipe.

Problem: Reliable detection of arm, hand, finger or head movements of enriched gestures

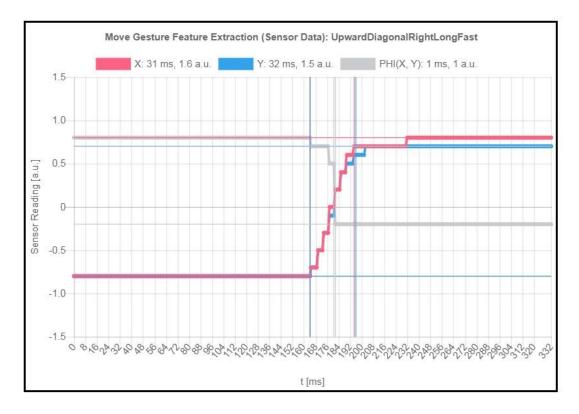
Supervised ML Gesture Recognition Workflow



Important: Use the same pre-processing and feature extraction algorithms for both training and real time prediction.



Recording Sensor Data / Pre-Processing



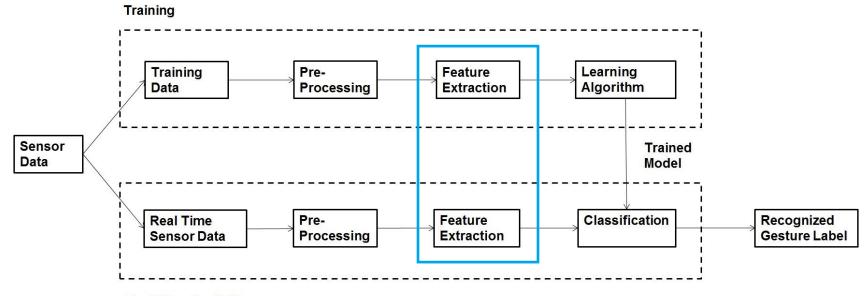
Recording Sensor Data:

Record continuously the position of the input device in both cartesian (X, Y) and polar (R, PHI) coordinates resulting from

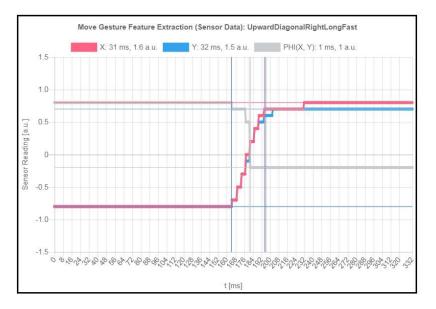
- Finger movements,
- Hand movements,
- Arm movements or
- Head movements

Pre-Processing:

Cleanse the sensor data (reducing noise, removing outliers, ...)



Feature Extraction



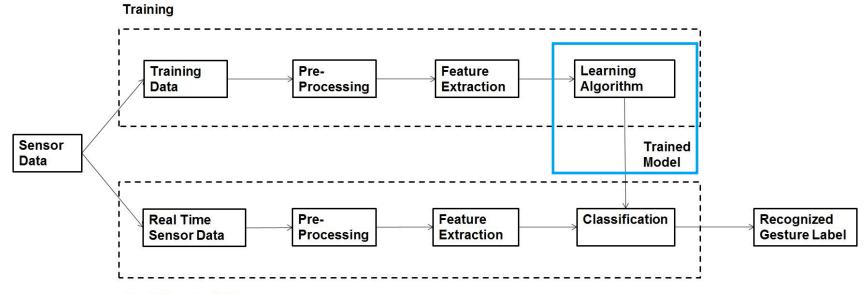
Non-Linear Regression Model

$\begin{array}{ll} t \leq t_{start}: & f(t) = s_{start} \\ t_{start} < t < t_{end}: f(t) = s_{start} \\ t \geq t_{end}: & f(t) = s_{end} \end{array} + \left((s_{end} - s_{start}) / (t_{end} - t_{start}) * (t - t_{start}) \right)$

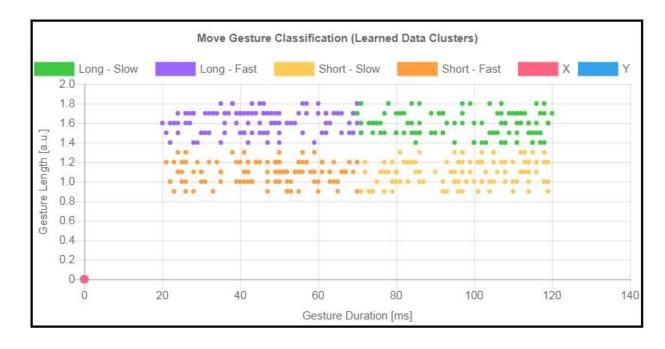
Reduces the dimension of the gesture recognition task.

For each coordinate orientation (horizontal, vertical, polar angle)

- Implement a non-linear regression (Nelder-Mead Simplex method) to fit consecutive 333 ms long time sequences of sensor data to a predefined mathematical model
- Find start / end time and start / end position of movement (**features**),
- Calculate duration and length of gesture if feature values are confined within reasonable limits.



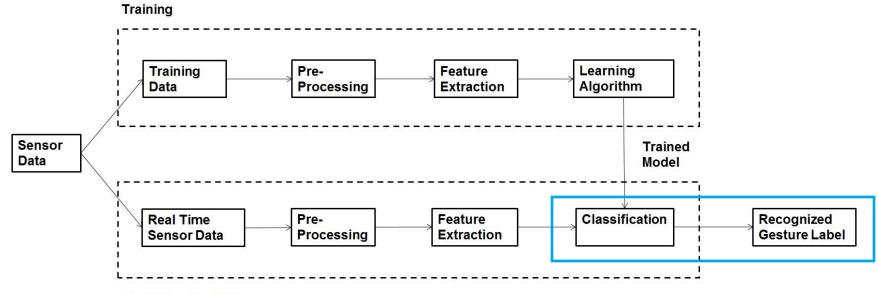
Trained Model



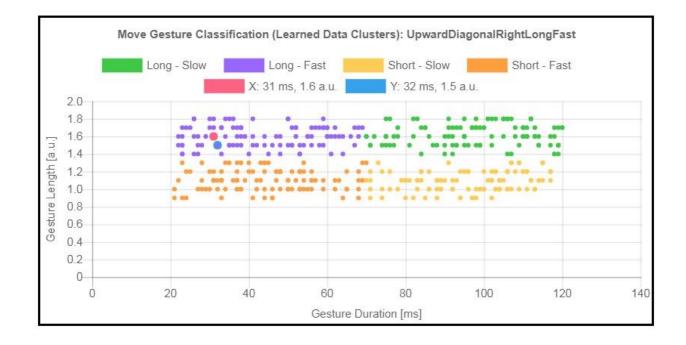
Training the Algorithm by Supervised Learning

Generate sets (clusters) of learned data (real or simulated) representing

- Long-Slow movements,
- Long-Fast movements,
- Short-Slow movements,
- Short-Fast movements.



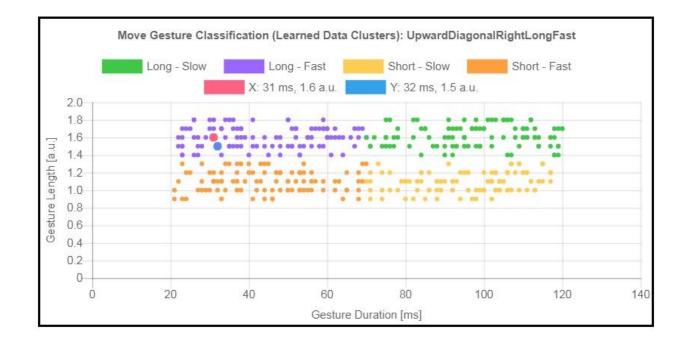
Classification (1/2)



Gesture Orientation

Define gesture orientation (left / right linear movement, up / down linear movement, clockwise / counter clockwise circular movement) using feature values (t_{start} , t_{end} , s_{start} , s_{end}) found.

Classification (2/2)



Gesture Type (k-Nearest Neighbor Analysis).

Define proper gesture label (long-slow, long-fast, short-slow, short-fast) by classifying the gesture duration $(t_{end} - t_{start})$ / gesture length $(s_{end} - s_{start})$ values found (red / blue dots) using the memorized learned data sets (k = 3)

Summary

Status:

- Is working pretty well.
- Is still work in progress.

Open questions:

- Input data:
 - How does the quality (i.e. pointing stability) of sensor data affects the prediction quality?
- Feature extraction:
 - Is the non-linear regression the appropriate method?
- Classification:
 - Is the k-nearest neighbor analysis the right method?
 - Which prediction accuracy can be achieved?
- Trained Model:
 - How does the prediction perform with real instead of simulated trained data?

http://web2ctoolkit.desy.de

Thank you

Sun rise at Mt. Jade (3.952 m), October 10th 2018