
Improving Web2cHMI
Gesture Recognition Using
Machine Learning

Reinhard Bacher

DESY, Hamburg, Germany

Page 2

Table of Contents

• Web2cToolkit:

• Brief overview

• Web2cHMI:

• Brief overview

• Supervised ML Use Case:

• Movement recognition

• Summary:

• Status

• Open questions

Page 3

Web2cToolkit Web Service Collection

The Web2cToolkit is a collection of Web services, i.e. servlet

applications and the corresponding Web browser applications, including

Viewer:

• Web2cViewerWizard

• Web2cArchiveViewer

Graphical GUI-Bilder:

• Web2cViewerWizard

• Web2cArchiveViewer

Mobile Framework:

• Web2cToGo

Miscellaneous:

• Web2cGateway

• Web2cManager

The Web2cToolkit provides interfaces to major

accelerator and beam line control systems including

TINE, DOOCS, EPICS (via DOOCS) TANGO and

STARS.

Page 4

Web2cHMI (1/2)

Web2cHMI is a Web-based, platform-neutral, single-user human machine

interface which seamlessly combines actions based on various modalities

provided by input devices commonly available from the consumer market.

Web3cToGo is a test environment for Web2cHMI.

Web2cHMI is implemented in JavaScript.

Web2cHMI supports various user input devices including

• Mouse

• Touch-sensitive display

• Leap motion controller

• Myo gesture control armband

• Epson Moverio BT-200 smart glass

• Vuzix M100 smart glass

• Microphone

Page 5

Web2cHMI (2/2)

All input modalities supported can be used simultaneously including

• 1D/2D at gestures including single- and multi-finger

• gestures,

• 2D/3D spatial gestures including hand and arm gestures,

• 3D head movements including yaw, pitch and roll

• English spoken commands.

The speech recognition system knows a Web2cHMI-specific vocabulary listed

in a dictionary such as “Browse Up" or “Lot More".

Page 6

Gestures

Web2cHMI recognizes various primitive gestures, i.e. input device-specific

gestures including

• Mouse: Click, Move

• Touch-sensitive display: Tap, Move / Swipe, Pinch (two fingers)

• Leap motion controller: Key-Tap, Swipe, Open-Hand, Closed-Hand, Circle

• Myo gesture control armband: Double-Tap, Wave-Out / Wave-In, Fingers-

Spread, Fist

• Smart glass: Move-Fast / Move-Slow, Roll

In addition, enriched gestures formed by primitive gestures followed by linear

movements or rotations etc. are supported. Examples are Fingers-Spread &

Clockwise Rotation or Sideward-Left Long Swipe.

Problem: Reliable detection of arm, hand, finger or head movements of

enriched gestures

Page 7

Supervised ML Gesture Recognition
Workflow

Important: Use the same pre-processing and feature extraction algorithms

for both training and real time prediction.

Page 8

Workflow Steps

Page 9

Recording Sensor Data / Pre-Processing

Pre-Processing:

Cleanse the sensor data (reducing noise, removing outliers, …)

Recording Sensor Data:

Record continuously the

position of the input device

in both cartesian (X, Y) and

polar (R, PHI) coordinates

resulting from

• Finger movements,

• Hand movements,

• Arm movements or

• Head movements

Page 10

Workflow Steps

Page 11

Feature Extraction

Reduces the dimension of the gesture

recognition task.

For each coordinate orientation

(horizontal, vertical , polar angle)

• Implement a non-linear regression

(Nelder-Mead Simplex method) to fit

consecutive 333 ms long time

sequences of sensor data to a pre-

defined mathematical model

• Find start / end time and start / end

position of movement (features),

• Calculate duration and length of

gesture if feature values are confined

within reasonable limits.

Non-Linear Regression Model

t ≤ tstart: f(t) = sstart

tstart < t < tend: f(t) = sstart + ((send – sstart) / (tend – tstart) * (t – tstart))

t ≥ tend: f(t) = send

Page 12

Workflow Steps

Page 13

Trained Model

Training the Algorithm by Supervised Learning

Generate sets (clusters) of learned data (real or simulated) representing

• Long-Slow movements,

• Long-Fast movements,

• Short-Slow movements,

• Short-Fast movements.

Page 14

Workflow Steps

Page 15

Classification (1/2)

Gesture Orientation

Define gesture orientation (left / right linear movement, up / down linear

movement, clockwise / counter clockwise circular movement) using

feature values (tstart, tend, sstart, send) found.

Page 16

Classification (2/2)

Gesture Type (k-Nearest Neighbor Analysis).

Define proper gesture label (long-slow, long-fast, short-slow, short-fast) by

classifying the gesture duration (tend – tstart) / gesture length (send – sstart)

values found (red / blue dots) using the memorized learned data sets (k = 3)

Page 17

Summary

Status:

• Is working pretty well.

• Is still work in progress.

Open questions:

• Input data:

• How does the quality (i.e. pointing stability) of sensor data affects

the prediction quality?

• Feature extraction:

• Is the non-linear regression the appropriate method?

• Classification:

• Is the k-nearest neighbor analysis the right method?

• Which prediction accuracy can be achieved?

• Trained Model:

• How does the prediction perform with real instead of simulated

trained data?

http://web2ctoolkit.desy.de

Thank you

Sun rise at Mt. Jade (3.952 m), October 10th 2018

