FPGA based image processing system for electron beam welding facility

Mikhail Sizov, Alexandr Starostenko, Kseniya Blokhina, Alexey Medvedev Budker Institute of nuclear physics SB RAS

BINP Electron beam welding facility

Features:

- 4.5m long
- 0.98m diameter
- 60 kV accelerating voltage
- Up to 1A beam current
- 2D coordinate table
- 2D magnetic corrector
- Secondary emission detector

BINP Electron beam welding facility

- Long samples (up to 2m)
- Steel, copper, tantalum

So, we can weld vacuum chambers inside vacuum (e.g. for FAIR HEBT project)

BINP Electron beam welding facility

And engrave...

Problem statement

- Evaporated metal in chamber (=>difficult to use cameras)
- Thermal deformations
- Mechanical vibrations
- Precision of joint position estimation
- No interrupts
- Coordinate table and electron gun synchronization

Hardware (FPGA + CPU) DE1-SoC/DE10-Nano

Hardware (FPGA + CPU) DE1-SoC/DE10-Nano

Hard processor system:

- Standard Arm 1GHz CPU, 1Gb Ram
- Can run Linux
- Has Ethernet
- Lots of standard Linux tools/compilers available (C++,Python,Java ...)
- No need to standalone development
- Good for high-level systems development

Hardware (FPGA + CPU) DE1-SoC/DE10-Nano

FPGA:

- ~100k LUT run in parallel with 50MHz
- DSP blocks
- Internal FPGA memory 1Mbit
- Has standard **memory-mapped interface** to CPU

User interface

Automatic correction system

- Continuously scans surface while welding
- Must be real time
- Synchronous to correctors/coordinate table/scanline generator

Beam profiling system

- Measures beam spatial energy distribution
- Used to minimise beam diameter
- Must be real time
- Synchronises secondary emission, magnetic correctors and pinhole beam detector

Real time system (in our case)

- Field gate programmable arrays
 - Can be real time
 - True parallelism
 - Constructing pipelines (high throughput, but have latency)
 - Low level coding (VHDL/Verilog), gate level

Other options have difficulties combining computational performance and low latency

In general RT systems are **difficult** to implement & debug

Caph

- Domain specific language
- Uses dataflow / functional paradigm (actors and nets)
- Has logical and clockwise simulators (used to fast debugging of algorithms)
- Translates code to VHDL

Results

- Enhances image by applying filters
- Calculates offset within 2ms (that is scanline period + latency)
- Latency is less that 20 FPGA cycles (400ns)
- System is limited by other pieces of hardware
 - Magnetic correctors
 - ADC and DAC curcuits

Conclusions

- 1. FPGA provide means to implement RT image processing system
- 2. Hybrid CPU/FPGA processors ease interaction between high and low level code by standard protocols/libraries
- 3. DSL usage speeds up development of RT system

Thank you for your attention!

