
Data Archiving and Visualization of IRFEL
Y. Song1, X. Chen, C. Li, K. Xuan, J. Wang, G. Liu2

National Synchrotron Radiation Laboratory (NSRL), USTC, Hefei, Anhui 230029, China

12th PCaPAC, October 16 - 19, 2018, Hsinchu, Taiwan,
1. yifans@mail.ustc.edu.cn 2. Corresponding author, gfliu@ustc.edu.cn

Abstract
An Infrared Free Electron Laser Light (IRFEL) is being constructed at National
Synchrotron Radiation Laboratory. The EPICS Archiver Appliance provides the
functions of historical data acquisition, archiving, migration, retrieval and man-
agement in the IRFEL facility. A Single-Page Web Application is developed for
the data visualization based on Vue.js framework and Highcharts JavaScirpt li-
brary. A unified interface is developed for the visualization to integrate multiple
data sources and provide the same retrieval entry of the historical data from
EPICS Archiver Appliance, the real-time data from EPICS IOC, the statistical
data from database and the alarm information from the Phoebus. This paper
will describe the implementation details of data archiving and visualization of
IRFEL.

Introduction
Tunable Infrared Laser for Fundamental of Energy Chemistry (FELiChEM) is the
significant scientific instrument, which is supported by the National Natural
Science Foundation of China in 2013. Infrared Free Electron Lasers (IRFEL) is
the core part of FELiChEM, which can accelerate beam to 60MeV and generate
middle-infrared and far-infrared laser. The control system of IRFEL is developed
based on Experimental Physics and Industrial Control System (EPICS).
The operation of a particle accelerator complex is a long-term experiment. It
is essential to record Process Variables (PVs) for further data analysis. The
EPICS Archiver Appliance (AA) is used as the data archiving tool for the IRFEL.
A Web-based GUI is developed for the data visualization. It not only provides the
function of historical data query, but also integrates real-time data, statistical
data and alarm information into a web application. This paper will describe the
implementation details of data archiving and visualization of IRFEL.

System Architecture

Single Page Application

IOC IOC IOC

Status

Push

Websocket

Archiver

Appliance

http

Statistical

Engine

http

Alarm 

Server

Kafka/http

Real-time 

Status

Historical 

Data

Statistical 

Data

Alarm 

Information

Nginx Proxy

Fig. 1: Architecture of the whole system.

Fig.1 shows the overall structure of the whole system. It is a typical web
application and implements the complete separation of the front and back end.
The data displayed on the front end can be divided into four types: real-time
status, historical data, statistical data and alarm information. As a reverse proxy
server, Nginx provides a unified interface for querying these four types of data.
The initial sources of the data are all the IOCs in the control system, but they
are processed through different ways. The implementation will be described in
detail about how to archive, store, process and visualize the data in the following
sections.

Conclusion In order to facilitate the construction and commissioning of
IRFEL facility, we developed a new system to archive, store, process and
visualize the data. The back end service contains data from multiple sources.
The front end web application provides a operation interface for users. Nginx
acts as a reverse proxy server to connect the front and backend. The design
of the complete separation of the front and back end is also convenient for
future expansion, like adding new data types and adding new methods for
interaction with users.
The system was put into operation in July 2018. The test results indicate that
the new archiving and visualization system is reliable, flexible and convenient
to operate.

Conclusion In order to facilitate the construction and commissioning of
IRFEL facility, we developed a new system to archive, store, process and
visualize the data. The back end service contains data from multiple sources.
The front end web application provides a operation interface for users. Nginx
acts as a reverse proxy server to connect the front and backend. The design
of the complete separation of the front and back end is also convenient for
future expansion, like adding new data types and adding new methods for
interaction with users.
The system was put into operation in July 2018. The test results indicate that
the new archiving and visualization system is reliable, flexible and convenient
to operate.

Implementation of server side
Real-time Data

IOC

pyepics

websocketd

Browser

WebSocket

stdin/stdout

Channel Access

Fig. 2: Principle of the status push program.

Fig. 2 shows the principle of the status
push program. Its core is the Websock-
etd, which is a small command-line tool that
will wrap an existing command-line inter-
face program, and allow it to be accessed
via a WebSocket. A python script is de-
veloped to monitor the PV change in IOC
Record via Channel Access and writes them
into STDOUT. Any text printed by the pro-
cess to STDOUT shall be sent as a Web-
Socket message whenever a newline is en-
countered. In this way, the JavaScript script
running in the browser can get the latest
change values of the PVs through the Web-
Socket and display them on the web page.

Historical Data
The EPICS Archiver Appliance comes with a web interface that has support for
various business processes. The web interface communicates with the server
principally using HTTP/JSON. Therefore, client application can get historical
data directly from this interface.

Statistical Data
The statistical data are obtained after processing historical data in AA. A dae-
mon is developed using Python based on Flask to get data from AA, perform
calculations within itself, and provide HTTP interfaces for client side.

Alarm Information
Phoebus uses Kafka as the communication method between alarm server and
alarm client. A daemon is developed based on Flask to get alarm message from
Kafka using kafka-python library and provide HTTP interfaces for client side
query.

Implementation of client side

Fig. 3: Screenshot of the Web-Based GUI.

The EPICS Archiver Appliance offers a Web UI for typical configuration tasks
and data presentation. However, this Web UI doesn’t meet our requirements in
the PV classification and search. So we developed a new web application to
provide real-time data display and historical data query as a Web-Based GUI. It
is a Single-Page Application (SPA) which is more application-like and interacts
with the user by dynamically rewriting the current page rather than loading
entire new pages from a server, which is used as the client side to interact with
users. Fig.3 shows the screenshot of the Web-Based GUI based on Vue.js, which
provides five tabs: Operation Status, Historical Data, Data Analysis, Alarm and
Help. The front end runs in an Express web server and the data in the web page
is obtained directly from the the Nginx via HTTP/JSON. The operator can select
the PV by the check box in front of the node. The chart component on the right
is the data visualization part based on Highcharts JavaScirpt library. We can
find the pv nodes in the tree, then select the check box in front of it, and the right
side will show the curve during the last 24 hours. The buttons below provide
many features, such as viewing and downloading raw data, setting coordinate
axes, switching between linear and logarithmic coordinates, and so on.


