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Abstract 
One of the heaviest workloads when installing a Control 

System on a plant is the development of a large number of 
device drivers. This is even more true in the case of scien-
tific facilities for which you typically deal with many cus-
tom devices and legacy code. In these cases, it is useful to 
consider the Rapid Application Development (RAD) ap-
proach that consists in lessen the planning phase and give 
more emphasis on an adaptive process, so that software 
prototypes can be successfully used in addition to or in 
place of design specifications. LabVIEW [1] is a typical 
RAD oriented development tool and is widely used in tech-
nical laboratories where many standalone programs are de-
veloped to manage devices under construction or evalua-
tion. An original system that allows software clients to use 
external LabVIEW drivers is presented. This system, orig-
inally created for the !CHAOS Control System [2], is en-
tirely written in LabVIEW and is based on JSON messages 
transmitted on a WebSocket communication driving Lab-
VIEW VIs through dynamic calls. This system is com-
pletely decoupled from the client and is therefore suitable 
for any Control System. 

DESCRIPTION OF THE ELF SYSTEM 
The project called ELF (External LabVIEW Functions 

executor) stemmed from the need to reuse as much as pos-
sible the huge amount of software — especially device 
drivers — already written in LabVIEW, to speed up the im-
plementation of new controls currently being implemented 
with !CHAOS, a control framework developed at the Na-
tional Laboratories of Frascati of the INFN. 

As the project evolved, its usefulness was also evident 
not only for the re-use of existing LabVIEW Virtual Instru-
ments (VIs) but also as a proficient method for the collab-
orative development of complex LabVIEW programs. In 
fact ELF provides for the VIs acting as drivers to be called 
by reference and not be wired into other G code, which 
greatly facilitates the team development. 

Ultimately, this work consists in the realization of an en-
vironment able to have LabVIEW VIs execute in a well 
managed and standardized manner, upon calls coming 
from a client application written in any language. 

 
The project requirements where: 
• to adopt widely used communication protocol and 

data-interchange format for the communication be-
tween the client and ELF; 

• to write the whole ELF code in G: the LabVIEW 
graphical programming language; 

• to be able to deal with simultaneous calls from multi-
ple clients; 

• to adopt a unique template for the VIs to be executed 
and a well defined syntax for their call; 

• to realize a modular architecture, allowing its usage 
both from non-LabVIEW and LabVIEW clients; 

• to get such performance that it could be used in a wide 
range of applications. 

It is worth to point out that the ELF employment is non 
restricted to the call of device drivers but extends to any 
VIs complying with the adopted template and syntax. 

COMMUNICATION BETWEEN CLIENT 
APPLICATIONS AND ELF 

First we must clarify what is meant — in this context — 
for client application (client from now on). We therefore 
define as client any program that accesses the ELF to per-
form a set of predefined functions implemented in Lab-
VIEW and obtain results back, if any. 

As an example, in our case the typical client is a 
!CHAOS Control Unit (CU): the control node that contin-
uously acquire data from a device and operate it. To access 
a physical device, the CU performs a RPC by using a  C++ 
skeleton that relays the function opcode along with its ar-
guments to a stub that eventually runs the actual driver.  In 
!CHAOS, drivers are usually implemented as C++ pro-
grams but, if they are available as LabVIEW VIs, the skel-
eton can direct the calls towards the ELF system which acts 
as stub. 

The communication between a client and ELF meets the 
client/server model, with ELF playing the role of server, 
and follows the WebSocket [3] protocol. 

WebSocket provides full-duplex communication be-
tween nodes over a single TCP connection with data mini-
mally framed, to the benefit of real-time data transfer. 

It provides a standardized way for the server to send con-
tent to the client without being first requested, and allowes 
messages to be passed back and forth while keeping the 
connection open. The WebSocket handshake starts with an 
HTTP request/response then — once the connection is es-
tablished — the communication switches to a bidirectional 
binary protocol which doesn't longer conform to HTTP. 
This method is advantageous since HTTP flows through 
proxies and therefore it is possible to open connections 
even from remote clients laying within a NAT, which is 
very convenient for distributed system where remote con-
trol nodes can be spread anywhere (as in the case of 
!CHAOS). 

As data-interchange format it has been adopted JSON 
(JavaScript Object Notation) because it is lightweight and 
also because JSON documents are ultimately strings, 
which facilitates the passage of different data formats to 
LabVIEW VIs. 
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We built the ELF as a modular system made of two Lab-
VIEW top-level VIs working jointly. The first module 
(named as EPROS: Elf Proxy Server) is a proxy server that 
connects in WebSocket to the client and interfaces it to the 
second module (named as SHIELD: Simple High-level In-
terface for Enhanced LabVIEW Drivers), where the vari-
ous functions are executed. EPROS and SHIELD talk to 
each other by mean of JSON documents passed through 
LabVIEW queues. 

This architecture, shown in Fig. 1, allows two different 
modes to access the ELF system: 

• Indirect Mode: a client not written in G or even written 
in G but running in a LabVIEW session different from 
the ELF one's, will utilize WebSocket/JSON and both 
the EPROS and SHIELD modules; 

• Direct Mode: should the client be a LabVIEW pro-
gram running in the very same session of the ELF, it 
would be useless to go through WebSocket, being 
much more convenient to utilize native LabVIEW 
queues. In this case, the client will use just the 
SHIELD module and exchange the JSON messages di-
rectly through its queues. 

VIs PREPARATION AND INSTALLATION 
When dealing with legacy software or even software 

written by more than one person, it is essential to define 
strict guidelines that allow for its integration. 

In ELF, the integration of drivers for a given device, pro-
vides for the establishment of a list of functions (namely 
the different actions that have to be performed on the de-
vice) and for each of these, the set of arguments to be 
passed and the returned results. Each function is identified 
by an opcode. 

Once the opcode list has been defined, the LabVIEW de-
veloper has to prepare for each opcode a dedicated VI able 
to perform its function. All these opcode VIs must adhere 
to a template and have the same connector pane, with: 

• a string input for the JSON document containing the 
parameters; 

• a cluster containing all the variables (named as service 
bus) that the developer considers to be meaningful to 
describe the status of the device; 

• a string output for the JSON document containing the 
results (or errors) to be returned to the client. 

If the developer writes the opcode VIs starting from 
scratch, then he will edit them directly according to the 
template, otherwise he will have to readjust the code he al-
ready owns, for example by encapsulating it in wrapper 
VIs compliant with the template. 

Once the opcodes have been prepared, they must be in-
stalled in the ELF system. As already mentioned, ELF is 
designed to completely decouple the opcode VIs both from 
the client and from itself. Therefore, the opcode VIs instal-
lation comes down to their copy in a predefined directory 
tree, so that they can be located and launched by reference 
by the SHIELD in accordance with the JSON directives 
coming from the client (see Fig. 1). 

 
Figure 1: The ELF system. The installation of drivers 
(compliant with the ELF guideline) comes down to their 
copy in a directory of the ELF tree. 

The ELF directory tree mirrors the grouping of devices 
into abstract classes. 

A class of devices is set out by a virtualization process 
that — starting from a physical object — concludes with 
the definition of a set of meaningful variables (dataset) that 
fully describe it from the vantage point of the control and 
a set of actions (commands) you want to perform on it. In 
that way, we can bring together — for instance — different 
brands/models/types of power supplies by identifying them 
with the same dataset and commands. Therefore, the direc-
tory tree shall consist of a first level of directories corre-
sponding to the abstract classes of devices, each of which 
contains other directories that are specific to the different 
brands/models/types of real power supplies. 

Ultimately, the developer of opcode VIs has to prepare 
them in accordance with the specifications and drop them 
in the proper folder. It is important to point out that, alt-
hough the directory structure is defined, its content is not. 
So, if no branch of directories is available for the class of 
elements to be installed, the developer is free to create it 
and populate it with its opcode VIs. 

At the end, the new set of opcode VIs can be located by 
mean of a uri in the form: 

<base_path>/class_drivers/power_supplies/brand_1/ 

CLIENT-ELF WORKFLOW 
There is a slight difference in the sequence of actions a 

client must perform, according to whether he accesses the 
ELF system in direct or indirect mode. Direct access is in 
fact reserved for clients running in the same LabVIEW ses-
sion of ELF (more precisely, of SHIELD). This means that 
both client and SHIELD are running on the very same ma-
chine, which makes the connection and authentication 
steps unnecessary. The workflow for indirect access is 
therefore described, since it also covers the direct mode. 

WebSocket Connection 
The client requires a WebSocket connection to the 

EPROS by sending a WebSocket header (this is a pure 
HTTP request) with the uri that identifies the drivers for 
the desired class. The EPROS checks the header format and 
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asks the SHIELD to confirm that the required VIs exist. If 
no errors occur, the EPROS accepts and establishes the 
connection. 

After receiving the HTTP header, all the subsequent 
phases of the workflow are carried on by exchanging pro-
prietary JSON messages. 

Authentication 
The client sends an authentication request containing a 

shared key; the EPROS checks the key and if no errors oc-
cur, grants access to the client. In order to serve concur-
rently multiple clients, the EPROS starts by reference an 
instance of servlet dedicated to that very client. From this 
moment on, the EPROS servlet behaves as a PROXY, since 
it limits itself to relay back and forth the messages between 
the client and the SHIELD and to manage any communi-
cation error. 
Initialization 

When a client transmits an initialization request with the 
uri, the SHIELD opens an instance of a VI (named as op-
caller) that will manage all the opcode requests for the 
given device. It also creates a UUID associated to the in-
stance of the op-caller and returns it back, appended to the 
uri. The concatenation of the uri with the UUID is essential 
to be able to later discriminate equal instances but related 
to different devices of the same class. At this point 
SHIELD use the op-caller to launch by reference the op-
code VI that performs the initialization of the physical de-
vice and — where appropriate —  of the channel it com-
municates through. 

Full Duplex Data Flow 
This is the operational phase, where the client has the 

ELF performing the desired actions by sending JSON re-
quest messages in the form: 

{ 
  "req_id":[int32], 
  "msg":{  
          "uri":[string], 
          "opc":[string], 
          "par":{...json document...} 
  } 
} 

where: 
• "req_id" is a transaction identifier; 
• "uri" identifies the specific op-caller instance; 
• "opc" specifies the action the external driver has to do; 
• "ele" identifies the element (e.g. its address); 
• "par" is a JSON document containing the parameters 

associated to the opcode and the specific element iden-
tifier (e.g. its address). 

 
For instance, the message: 
{"req_id":123456,"msg":{"uri":"/LabVIEW_external_d

rivers/power_supplies/brand_1/FFA0C0D8","opc":"set_c
ur","par":{"ele":"01", "value":10.5}}} 

calls the opcode "set_cur" with the parameter "value" 
equal to 10.5, which cause to set the power supply current 
to 10.5 [A]. 

At each request message, SHIELD handles the client call 
by relaying it to the op-caller that calls by reference the 
appropriate opcode VI. 

All client requests are always answered with frames in 
the form: 

{ 
  "req_id":[int32], 
  "msg":{ 
          "err":[int32], 
          "err_msg":[string], 
          "err_dmn":[string], 
          "result":{...json document...} 
  } 
} 

where: 
• "req_id" is a transaction identifier that has to be equal 

to the transmitted one; 
• "err" is the error code (0 = no error); 
• "err_msg" describe the error (present only if err ≠0); 
• "err_dmn" is the error domain (present only if err ≠0); 
• "result" is a JSON document containing the result re-

turned by the opcode VI. This field is present only if 
the opcode VI provides for some values to be returned. 

Deinitialization 
The client asks for the deinitialization of the physical de-

vice (if applicable) and the release of associated resource. 
Consequently, the SHIEL destroys the op-caller instance as 
well as all the related opcode VIs hanging in memory and 
remove the UUID from its internal list. 

WebSocket Disconnection 
The client sends a standard WebSocket "close connec-

tion" message which is answered by the EPROS that even-
tually will also drop the TCP/IP connection. 

EPROS AND SHIELD 
The EPROS Module 

As said above, a WebSocket connection starts with an 
HTTP request and then switches to WebSocket over the 
same underlying TCP/IP connection. This means that on 
the server side there must be an always running TCP lis-
tener, to accept requests from various potential clients,  as 
well as various WebSocket servers running, to service 
those already connected clients. The EPROS is therefore 
made of a top level VI that keeps listening and, when a TCP 
connection request arrives from a client, launches by refer-
ence an instance of a WebSocket server that take charge of 
that client. This instance (named as servlet) is a replica of 
a VI Template (VIT) and has a dataspace completely inde-
pendent from the other servlets. 

The servlet is made of four parallel loops data-independ-
ent form one another that can concurrently execute the fol-
lowing tasks: 

• check and serve WebSocket connection and authenti-
cation requests; 

• receive WebSocket request messages; 
• communicate with the SHIELD through LabVIEW 

queues; 
• send WebSocket answer messages to the client. 
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The four loops pass information to one another by using 
queues, which is fast and maintain the data-independency 
among them. 

The low level WebSocket read and write functions have 
been written from scratch and cover the following Web-
Socket actions: read text frame (also multiframes), ping, 
pong, close connection. 

The SHIELD Module 
The SHIELD must be able to manage multiple clients at 

the same time. To do that,  
when a client asks for the initialization of a given device, 

it launches by reference a dedicated instance of op-caller 
that will handle all the calls for that device. There is a one-
to-one correspondence among EPROS servlets and 
SHIELD op-callers, being each pair the two endpoints of a 
channel dedicated to a specific device. 

When a call with a given opcode arrives for the first time, 
the op-caller starts by reference the opcode VI which is in 
the folder specified by the uri. The opcode VI executes the 
action and then stays idle in memory, ready for the next call 
with the same opcode. To permit this, all the opcode VIs 
must be set as "pre-allocated clone reentrant execution" 
which provides for a mutual data-independency and no 
loading time at call. 

The SHIELD provides also for the garbage collection of 
dandling instances. 

SYSTEM PERFORMANCES 
The ELF system has been tested to understand its poten-

tial fields of application. 
We therefore made some measurements to determine the 

frequency of execution of an opcode VI upon continuous 
calls coming from a client. 

This figure depends on the client performance, the rank 
of the machines running both client and ELF system, the 
network and obviously the intrinsic execution time of the 
opcode VI that can vary widely. An opcode VI could in fact 
run on a remote machine and having to drive a device con-
nected through low baud-rate serial line or run on embed-
ded processor and having to simply set a register of a board 
resident in its own bus. 

The measurement was therefore made net of the opcode 
execution time, by using a dummy VI that always returned 
a constant value to the get_curr (get current) opcode. 

The client application was a standard !CHAOS Control 
Unit running on a virtual machine and the ELF system was 
running on another virtual machine, with ping time be-
tween the two of ~500 us. The read process can be reduced 
to three main steps: 

• the client sends a WebSocket message with the opcode 
"get_curr" to the servlet; 

• the opcode VI executes and returns the value to the 
servlet; 

• the servlet sends a WebSocket message with the result 
back to the client. 

Therefore, the full query consists of two WebSocket 
transmissions that are performed synchronously by the 
Control Unit. In this condition the overhead for the query 

is ~1 ms. The measure has been done by varying an internal 
parameter of the CU (sleep-time) that allows the modula-
tion of its running frequency. It can be seen in Fig. 2 that 
as the CU sleep-time decreases the frequency of calls in-
creases up to 1 kHz, which is consistent with the overhead 
of 1 ms due to network latency. 

 
Figure 2: Frequency of calls of a LabVIEW driver. 

The sharp breakthrough at 1 kHz must not be considered 
as a limit of the ELF system because it is due to the CU 
running synchronously and therefore executing the queries 
in a series. We are going to do more tests with asynchro-
nous calls in order to work out the actual limits of the sys-
tem. 

The SHIELD module has also been tested in direct mode 
using a minimal LabVIEW client written on purpose. In 
this case the process takes 100% of the CPU and the fre-
quency dramatically increases, according to the CPU per-
formances. 
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