
A UNIVERSAL SYSTEM BASED ON WEBSOCKET AND JSON FOR THE
EMPLOYMENT OF LabVIEW EXTERNAL DRIVERS

Alessandro Stecchi, Claudio Bisegni, Paolo Ciuffetti, Giampiero Di Pirro, Alessandro D'Uffizi,
Francesco Galletti, Andrea Michelotti (INFN/LNF, Frascati (Roma))

Abstract
One of the heaviest workloads when installing a Control

System on a plant is the development of a large number of
device drivers. This is even more true in the case of scien-
tific facilities for which you typically deal with many cus-
tom devices and legacy code. In these cases, it is useful to
consider the Rapid Application Development (RAD) ap-
proach that consists in lessen the planning phase and give
more emphasis on an adaptive process, so that software
prototypes can be successfully used in addition to or in
place of design specifications. LabVIEW [1] is a typical
RAD oriented development tool and is widely used in tech-
nical laboratories where many standalone programs are de-
veloped to manage devices under construction or evalua-
tion. An original system that allows software clients to use
external LabVIEW drivers is presented. This system, orig-
inally created for the !CHAOS Control System [2], is en-
tirely written in LabVIEW and is based on JSON messages
transmitted on a WebSocket communication driving Lab-
VIEW VIs through dynamic calls. This system is com-
pletely decoupled from the client and is therefore suitable
for any Control System.

DESCRIPTION OF THE ELF SYSTEM
The project called ELF (External LabVIEW Functions

executor) stemmed from the need to reuse as much as pos-
sible the huge amount of software — especially device
drivers — already written in LabVIEW, to speed up the im-
plementation of new controls currently being implemented
with !CHAOS, a control framework developed at the Na-
tional Laboratories of Frascati of the INFN.

As the project evolved, its usefulness was also evident
not only for the re-use of existing LabVIEW Virtual Instru-
ments (VIs) but also as a proficient method for the collab-
orative development of complex LabVIEW programs. In
fact ELF provides for the VIs acting as drivers to be called
by reference and not be wired into other G code, which
greatly facilitates the team development.

Ultimately, this work consists in the realization of an en-
vironment able to have LabVIEW VIs execute in a well
managed and standardized manner, upon calls coming
from a client application written in any language.

The project requirements where:
• to adopt widely used communication protocol and

data-interchange format for the communication be-
tween the client and ELF;

• to write the whole ELF code in G: the LabVIEW
graphical programming language;

• to be able to deal with simultaneous calls from multi-
ple clients;

• to adopt a unique template for the VIs to be executed
and a well defined syntax for their call;

• to realize a modular architecture, allowing its usage
both from non-LabVIEW and LabVIEW clients;

• to get such performance that it could be used in a wide
range of applications.

It is worth to point out that the ELF employment is non
restricted to the call of device drivers but extends to any
VIs complying with the adopted template and syntax.

COMMUNICATION BETWEEN CLIENT
APPLICATIONS AND ELF

First we must clarify what is meant — in this context —
for client application (client from now on). We therefore
define as client any program that accesses the ELF to per-
form a set of predefined functions implemented in Lab-
VIEW and obtain results back, if any.

As an example, in our case the typical client is a
!CHAOS Control Unit (CU): the control node that contin-
uously acquire data from a device and operate it. To access
a physical device, the CU performs a RPC by using a C++
skeleton that relays the function opcode along with its ar-
guments to a stub that eventually runs the actual driver. In
!CHAOS, drivers are usually implemented as C++ pro-
grams but, if they are available as LabVIEW VIs, the skel-
eton can direct the calls towards the ELF system which acts
as stub.

The communication between a client and ELF meets the
client/server model, with ELF playing the role of server,
and follows the WebSocket [3] protocol.

WebSocket provides full-duplex communication be-
tween nodes over a single TCP connection with data mini-
mally framed, to the benefit of real-time data transfer.

It provides a standardized way for the server to send con-
tent to the client without being first requested, and allowes
messages to be passed back and forth while keeping the
connection open. The WebSocket handshake starts with an
HTTP request/response then — once the connection is es-
tablished — the communication switches to a bidirectional
binary protocol which doesn't longer conform to HTTP.
This method is advantageous since HTTP flows through
proxies and therefore it is possible to open connections
even from remote clients laying within a NAT, which is
very convenient for distributed system where remote con-
trol nodes can be spread anywhere (as in the case of
!CHAOS).

As data-interchange format it has been adopted JSON
(JavaScript Object Notation) because it is lightweight and
also because JSON documents are ultimately strings,
which facilitates the passage of different data formats to
LabVIEW VIs.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP08

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
WEP08

47

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

We built the ELF as a modular system made of two Lab-
VIEW top-level VIs working jointly. The first module
(named as EPROS: Elf Proxy Server) is a proxy server that
connects in WebSocket to the client and interfaces it to the
second module (named as SHIELD: Simple High-level In-
terface for Enhanced LabVIEW Drivers), where the vari-
ous functions are executed. EPROS and SHIELD talk to
each other by mean of JSON documents passed through
LabVIEW queues.

This architecture, shown in Fig. 1, allows two different
modes to access the ELF system:

• Indirect Mode: a client not written in G or even written
in G but running in a LabVIEW session different from
the ELF one's, will utilize WebSocket/JSON and both
the EPROS and SHIELD modules;

• Direct Mode: should the client be a LabVIEW pro-
gram running in the very same session of the ELF, it
would be useless to go through WebSocket, being
much more convenient to utilize native LabVIEW
queues. In this case, the client will use just the
SHIELD module and exchange the JSON messages di-
rectly through its queues.

VIs PREPARATION AND INSTALLATION
When dealing with legacy software or even software

written by more than one person, it is essential to define
strict guidelines that allow for its integration.

In ELF, the integration of drivers for a given device, pro-
vides for the establishment of a list of functions (namely
the different actions that have to be performed on the de-
vice) and for each of these, the set of arguments to be
passed and the returned results. Each function is identified
by an opcode.

Once the opcode list has been defined, the LabVIEW de-
veloper has to prepare for each opcode a dedicated VI able
to perform its function. All these opcode VIs must adhere
to a template and have the same connector pane, with:

• a string input for the JSON document containing the
parameters;

• a cluster containing all the variables (named as service
bus) that the developer considers to be meaningful to
describe the status of the device;

• a string output for the JSON document containing the
results (or errors) to be returned to the client.

If the developer writes the opcode VIs starting from
scratch, then he will edit them directly according to the
template, otherwise he will have to readjust the code he al-
ready owns, for example by encapsulating it in wrapper
VIs compliant with the template.

Once the opcodes have been prepared, they must be in-
stalled in the ELF system. As already mentioned, ELF is
designed to completely decouple the opcode VIs both from
the client and from itself. Therefore, the opcode VIs instal-
lation comes down to their copy in a predefined directory
tree, so that they can be located and launched by reference
by the SHIELD in accordance with the JSON directives
coming from the client (see Fig. 1).

Figure 1: The ELF system. The installation of drivers
(compliant with the ELF guideline) comes down to their
copy in a directory of the ELF tree.

The ELF directory tree mirrors the grouping of devices
into abstract classes.

A class of devices is set out by a virtualization process
that — starting from a physical object — concludes with
the definition of a set of meaningful variables (dataset) that
fully describe it from the vantage point of the control and
a set of actions (commands) you want to perform on it. In
that way, we can bring together — for instance — different
brands/models/types of power supplies by identifying them
with the same dataset and commands. Therefore, the direc-
tory tree shall consist of a first level of directories corre-
sponding to the abstract classes of devices, each of which
contains other directories that are specific to the different
brands/models/types of real power supplies.

Ultimately, the developer of opcode VIs has to prepare
them in accordance with the specifications and drop them
in the proper folder. It is important to point out that, alt-
hough the directory structure is defined, its content is not.
So, if no branch of directories is available for the class of
elements to be installed, the developer is free to create it
and populate it with its opcode VIs.

At the end, the new set of opcode VIs can be located by
mean of a uri in the form:

<base_path>/class_drivers/power_supplies/brand_1/

CLIENT-ELF WORKFLOW
There is a slight difference in the sequence of actions a

client must perform, according to whether he accesses the
ELF system in direct or indirect mode. Direct access is in
fact reserved for clients running in the same LabVIEW ses-
sion of ELF (more precisely, of SHIELD). This means that
both client and SHIELD are running on the very same ma-
chine, which makes the connection and authentication
steps unnecessary. The workflow for indirect access is
therefore described, since it also covers the direct mode.

WebSocket Connection
The client requires a WebSocket connection to the

EPROS by sending a WebSocket header (this is a pure
HTTP request) with the uri that identifies the drivers for
the desired class. The EPROS checks the header format and

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP08

WEP08
48

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

GUI Technologies and Frameworks, User Interfaces and Tools for Operations

asks the SHIELD to confirm that the required VIs exist. If
no errors occur, the EPROS accepts and establishes the
connection.

After receiving the HTTP header, all the subsequent
phases of the workflow are carried on by exchanging pro-
prietary JSON messages.

Authentication
The client sends an authentication request containing a

shared key; the EPROS checks the key and if no errors oc-
cur, grants access to the client. In order to serve concur-
rently multiple clients, the EPROS starts by reference an
instance of servlet dedicated to that very client. From this
moment on, the EPROS servlet behaves as a PROXY, since
it limits itself to relay back and forth the messages between
the client and the SHIELD and to manage any communi-
cation error.
Initialization

When a client transmits an initialization request with the
uri, the SHIELD opens an instance of a VI (named as op-
caller) that will manage all the opcode requests for the
given device. It also creates a UUID associated to the in-
stance of the op-caller and returns it back, appended to the
uri. The concatenation of the uri with the UUID is essential
to be able to later discriminate equal instances but related
to different devices of the same class. At this point
SHIELD use the op-caller to launch by reference the op-
code VI that performs the initialization of the physical de-
vice and — where appropriate — of the channel it com-
municates through.

Full Duplex Data Flow
This is the operational phase, where the client has the

ELF performing the desired actions by sending JSON re-
quest messages in the form:

{
 "req_id":[int32],
 "msg":{
 "uri":[string],
 "opc":[string],
 "par":{...json document...}
 }
}

where:
• "req_id" is a transaction identifier;
• "uri" identifies the specific op-caller instance;
• "opc" specifies the action the external driver has to do;
• "ele" identifies the element (e.g. its address);
• "par" is a JSON document containing the parameters

associated to the opcode and the specific element iden-
tifier (e.g. its address).

For instance, the message:
{"req_id":123456,"msg":{"uri":"/LabVIEW_external_d

rivers/power_supplies/brand_1/FFA0C0D8","opc":"set_c
ur","par":{"ele":"01", "value":10.5}}}

calls the opcode "set_cur" with the parameter "value"
equal to 10.5, which cause to set the power supply current
to 10.5 [A].

At each request message, SHIELD handles the client call
by relaying it to the op-caller that calls by reference the
appropriate opcode VI.

All client requests are always answered with frames in
the form:

{
 "req_id":[int32],
 "msg":{
 "err":[int32],
 "err_msg":[string],
 "err_dmn":[string],
 "result":{...json document...}
 }
}

where:
• "req_id" is a transaction identifier that has to be equal

to the transmitted one;
• "err" is the error code (0 = no error);
• "err_msg" describe the error (present only if err ≠0);
• "err_dmn" is the error domain (present only if err ≠0);
• "result" is a JSON document containing the result re-

turned by the opcode VI. This field is present only if
the opcode VI provides for some values to be returned.

Deinitialization
The client asks for the deinitialization of the physical de-

vice (if applicable) and the release of associated resource.
Consequently, the SHIEL destroys the op-caller instance as
well as all the related opcode VIs hanging in memory and
remove the UUID from its internal list.

WebSocket Disconnection
The client sends a standard WebSocket "close connec-

tion" message which is answered by the EPROS that even-
tually will also drop the TCP/IP connection.

EPROS AND SHIELD
The EPROS Module

As said above, a WebSocket connection starts with an
HTTP request and then switches to WebSocket over the
same underlying TCP/IP connection. This means that on
the server side there must be an always running TCP lis-
tener, to accept requests from various potential clients, as
well as various WebSocket servers running, to service
those already connected clients. The EPROS is therefore
made of a top level VI that keeps listening and, when a TCP
connection request arrives from a client, launches by refer-
ence an instance of a WebSocket server that take charge of
that client. This instance (named as servlet) is a replica of
a VI Template (VIT) and has a dataspace completely inde-
pendent from the other servlets.

The servlet is made of four parallel loops data-independ-
ent form one another that can concurrently execute the fol-
lowing tasks:

• check and serve WebSocket connection and authenti-
cation requests;

• receive WebSocket request messages;
• communicate with the SHIELD through LabVIEW

queues;
• send WebSocket answer messages to the client.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP08

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
WEP08

49

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The four loops pass information to one another by using
queues, which is fast and maintain the data-independency
among them.

The low level WebSocket read and write functions have
been written from scratch and cover the following Web-
Socket actions: read text frame (also multiframes), ping,
pong, close connection.

The SHIELD Module
The SHIELD must be able to manage multiple clients at

the same time. To do that,
when a client asks for the initialization of a given device,

it launches by reference a dedicated instance of op-caller
that will handle all the calls for that device. There is a one-
to-one correspondence among EPROS servlets and
SHIELD op-callers, being each pair the two endpoints of a
channel dedicated to a specific device.

When a call with a given opcode arrives for the first time,
the op-caller starts by reference the opcode VI which is in
the folder specified by the uri. The opcode VI executes the
action and then stays idle in memory, ready for the next call
with the same opcode. To permit this, all the opcode VIs
must be set as "pre-allocated clone reentrant execution"
which provides for a mutual data-independency and no
loading time at call.

The SHIELD provides also for the garbage collection of
dandling instances.

SYSTEM PERFORMANCES
The ELF system has been tested to understand its poten-

tial fields of application.
We therefore made some measurements to determine the

frequency of execution of an opcode VI upon continuous
calls coming from a client.

This figure depends on the client performance, the rank
of the machines running both client and ELF system, the
network and obviously the intrinsic execution time of the
opcode VI that can vary widely. An opcode VI could in fact
run on a remote machine and having to drive a device con-
nected through low baud-rate serial line or run on embed-
ded processor and having to simply set a register of a board
resident in its own bus.

The measurement was therefore made net of the opcode
execution time, by using a dummy VI that always returned
a constant value to the get_curr (get current) opcode.

The client application was a standard !CHAOS Control
Unit running on a virtual machine and the ELF system was
running on another virtual machine, with ping time be-
tween the two of ~500 us. The read process can be reduced
to three main steps:

• the client sends a WebSocket message with the opcode
"get_curr" to the servlet;

• the opcode VI executes and returns the value to the
servlet;

• the servlet sends a WebSocket message with the result
back to the client.

Therefore, the full query consists of two WebSocket
transmissions that are performed synchronously by the
Control Unit. In this condition the overhead for the query

is ~1 ms. The measure has been done by varying an internal
parameter of the CU (sleep-time) that allows the modula-
tion of its running frequency. It can be seen in Fig. 2 that
as the CU sleep-time decreases the frequency of calls in-
creases up to 1 kHz, which is consistent with the overhead
of 1 ms due to network latency.

Figure 2: Frequency of calls of a LabVIEW driver.

The sharp breakthrough at 1 kHz must not be considered
as a limit of the ELF system because it is due to the CU
running synchronously and therefore executing the queries
in a series. We are going to do more tests with asynchro-
nous calls in order to work out the actual limits of the sys-
tem.

The SHIELD module has also been tested in direct mode
using a minimal LabVIEW client written on purpose. In
this case the process takes 100% of the CPU and the fre-
quency dramatically increases, according to the CPU per-
formances.

REFERENCES
[1] LabVIEW, http://ni.com
[2] L. Catani et al, “Introducing a New Paradigm for Accelera-

tors and Large Experimental Apparatus Control Systems”,
Phys. Rev. ST Accel. Beams, Nov. 2012, vol. 15, p. 112804.

[3] WebSocket, https://tools.ietf.org/html/rfc6455

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP08

WEP08
50

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

GUI Technologies and Frameworks, User Interfaces and Tools for Operations

