
Firmware Structure cont.

Firmware Structure

FreeRTOS

Abstract

openMMC: An open source modular firmware for board
management

H. A. Silva, G. B. M. Bruno, LNLS, Campinas,
henrique.silva@lnls.br

 openMMC is an open-source firmware designed for board management in
MicroTCA systems. It has a modular architecture providing decoupling between
application, board and microcontroller-specific routines, making it useful as a
base for many different designs, even those using less powerful controllers.
 Despite being developed in a MicroTCA context, the firmware can be easily
adapted to other hardware platforms and communication protocols.
 The firmware is based on the FreeRTOS operating system, over which each
monitoring function (sensors, LEDs, Payload management, etc) runs its own
independent task. The OS, despite its reduced footprint, also provides numerous
tools for reliable communication among the tasks, controlling the board
efficiently.

OBJECTIVE: Easy to port and upgrade to different boards and controllers
(reusable code).

Four different abstraction layers implemented: Application, Hardware
Abstraction, Port and Driver, as disposed in Figure 2.

Figure 2: openMMC layers disposal with examples of the type of code present in each one (small
gray boxes)

Application: High level monitoring tasks (state-machines, sensors
management, etc.)
Hardware Abstraction: Interfaces with application’s specific peripheral
hardware. Examples:

➔ SCANSTA111 JTAG Switch
➔ ADN4604 Clock Crossbar Switch
➔ AD84XX DAC
➔ AT24MAC EEPROM
➔ 24xx64 EEPROM
➔ LM75 Temperature Sensor
➔ MAX6642 Temperature Sensor
➔ INA220 Voltage and Current Sensor
➔ Si57X Oscillator
➔ PCA9554 I/O Expander

Port: Masks all functions provided by the controller’s drivers to the upper
layes

Drivers: Microcontroller internal hardware interfaces (e.g. LPCOpen, Atmel
ASF, CMSIS)

Board Porting

 The authors would like to thank K. Macias from Creotech Instruments SA for
the extensive firmware debug and P. Miedzik from GSI for the initial discussions
in the firmware structure definition and by suggesting FreeRTOS as a base for
the project.

Real Time kernel for embedded applications written in C.
● User code is organized as a collection of parallel independent tasks
● Implements a priority-based preemptive scheduler
● Round-robin time slicing algorithm for same priority tasks
● Task Communication tools, such as queues, semaphores, timers, etc.

Figure 1: Demonstrates the execution flow of FreeRTOS-based application, in which two low
priority and a high priority tasks are created. The scheduler implements the round-robin time

slicing from t2 to t3. When the high priority task is enabled in t3, the scheduler switches context to
it, interrupting low-priority task 2. An external interruption happens in t4, being serviced instead

of the high priority task.

Figure 3: Example of the functions calls through openMMC’s layers. The application task calls the generic
function sensor_update(), which must call lm75_read_temp() to update the temperature readings. In HAL layer,

the LM75 module uses an I2C read to interface with the IC. The I2C driver function is redirected from either
LPCOpen or Atmel’s ASF drivers.

CMake scripts are used to select each board’s modules, according to its
hardware. Examples of the CmakeLists.txt file selecting the modules are shown
in Figure 3.

#AFC-BPM MODULES
set(AFCBPM_MODULES
 "FRU"
 "PAYLOAD"
 "SDR"
 "WATCHDOG"
 "CLOCK_SWITCH"
 "FPGA_SPI"
 "AD84XX_DAC"
 "EEPROM_AT24MAC"
 "HOTSWAP_SENSOR"
 "LM75"
 "MAX6642"
 "INA220"
 "HPM"
)

#TIMING AMC MODULES
set(TIMINGAMC_MODULES
 "FRU"
 "PAYLOAD"
 "SDR"
 "WATCHDOG"
 "PLL_CTRL"
 "WHITE_RABBIT"
 "HOTSWAP_SENSOR"
 "LM75"
 "RTM"
 "HPM"
)

Figure 3: Examples of the code that selects which modules will be compiled for two different
board ports.

THPOPRPO04 October, 2016

Acknowledgments

