

UVX CONTROL SYSTEM: AN APPROACH WITH BEAGLEBONE BLACK

S. Lescano, INSA Lyon, Villeurbanne, France

A. R. D. Rodrigues, E. P. Coelho, G. C. Pinton, J. G. R. S. Franco*, P. H. Nallin, Brazilian

Synchrotron Light Laboratory (LNLS), Campinas, Brazil

guilherme.franco@lnls.br

- Networker thread: deal with client I/O operations through a TCP/IP socket. When the client only wants to read the inputs of the cards, the last values obtained by the reader thread (stored in RAM) are retrieved. - Interrupter thread: this thread is active when the controller is performing synchronized operations over power supplies. Operation of this thread assumes that controller has in RAM memory a waveform, which is pointby-point traversed each time it receives a trigger pulse from UVX timing system.

Abstract

UVX is a 1.37 GeV synchrotron light source that has been in operation by the Brazilian Synchrotron Light Laboratory (LNLS) since 1997. Its control system, which was completely developed in-house, has received some upgrades lately in order to get around issues from aging, improve performance and reduce maintenance costs. In this way, a new crate controller was designed. It is based on BeagleBone Black single-board computer (SBC) [1], a cheap open hardware and community-supported embedded Linux platform that will be adopted for some control system applications in Sirius [2], the upcoming brazilian light source. In this work, we describe an overview of the design and results obtained.

LOCO (LOcal COntroller)

- Low-level hardware for control applications.
- Developed about 20 years ago.
- 3U crates of Eurocard-sized boards.
- I/O cards with digital and analog inputs and outputs.

- Local controller: special card with an universal software, responsible for managing I/O cards and communications to the upper levels of the control system. There are three generations of this board.

Threads tuning

In order to evaluate and improve interrupter thread performance, we considered a series of tests exploring PROSAC configuration parameters and important aspects of the embedded operational system (Linux), such as its kernel configuration and scheduling policies and priorities.

Configurations that didn't present a good performance:

- Linux kernel with PREEMPT_RT patch ([6]), SCHED_FIFO scheduling policy and CPU frequency set to 1 GHz.
- Traditional Linux kernel, SCHED_FIFO scheduling policy and CPU frequency set to 1 GHz.
- Traditional Linux kernel, Completely Fair Scheduler (CFS) with appropriate

- "Transparent" architecture: only high level applications know what nice values for each thread and CPU frequency set to 1 GHz. equipments are controlled by each crate.

Motivation for a new controller design

- Provide a substitute for old controllers. All of them are obsolete. - Evaluate a new computing platform in a real operation environment.

Hardware design

We made a simple "carrier PCB" design for BeagleBone Black, just placing in a Eurocard-sized board digital buffers between BeagleBone Black GPIO pins and the LOCO bus signals on crate backplane. The board also has a counter, used during synchronized operations over power supplies (energy) ramp and magnets cycling), a 7-segment display for status indication (just as it was since the first generation of local controller boards) and a reset monitoring circuit.

Embedded software

Software for this new design is an adaptation of third generation controllers software (named PROSAC). Low-level routines for reading and writing I/O cards were modified. Now they use BeagleBone Black GPIO pins. PROSAC runs four threads, described below:

Chosen configuration:

- Traditional Linux kernel, CFS with appropriate nice values for each thread, reader thread disabled during synchronized operation and CPU frequency set to 1 GHz. Bus readings are performed inside interrupter thread routine when the controller is under synchronized operation.

Conclusion

Tests showed that BeagleBone Black can serve as a hardware platform for UVX local controllers. The new design has an acceptable performance during synchronized operation, comparable to that of the previous one.

References

[1] BeagleBoard.org, http://beagleboard.org/

[2] J. P. S. Martins et al., "Sirius control system: design, implementation strategy and measured performance", in Proc. ICALEPCS'15, Melbourne, Australia, Oct. 2015, pp. 456-459.

[3] J. G. Franco et al., "LNLS control system", in Proc. ICALEPCS'99, Trieste, Italy, Oct. 1999, pp. 651-653. [4] J. G. R. S. Franco et al., "Upgrading the LNLS control system from a proprietary to a commercial communications environment, in Proc. EPAC'04, Lucerne, Switzerland, Jul. 2004, pp. 530-532. [5] R. Love, "Process scheduling", in Linux Kernel Development: Addison-Wesley, 2010, pp. 64-65. [6] Real-Time Linux, https://wiki.linuxfoundation.org/realtime/start

- Main thread: launches the other threads and periodically updates a 7segment display, which shows local controller status. - Reader thread: reads continually all inputs from the I/O cards, storing these values in RAM memory.