
AUGMENTED USER INTERACTION
R. Bacher, DESY, Hamburg, Germany

Abstract
The advent of advanced mobile, gaming and augmented

reality devices provides users with novel interaction
modalities. Speech, finger and hand gesture recognition or
even gaze detection are commonly used technologies,
often enriched with data from embedded gyroscope-like
motion sensors. This paper discusses potential use cases
of those technologies in the field of accelerator controls
and maintenance. It describes the conceptual design of an
intuitive, single-user, multi-modal human-machine
interface which seamlessly incorporates actions based on
various modalities in a single API. It discusses the present
implementation status of this interface (Web2cHMI)
within the Web2cToolkit framework. Finally, an outlook
to future developments and ideas is presented.

MOTIVATION
Zooming applications by performing a pinch gesture at

touch-sensitive displays, talking with the personal
assistant to retrieve information from the internet, or
controlling video games through a gaming console
recognizing arm and body motions are all popular and
intuitive interface features currently in common use.
These technologies, well known in the consumer market,
have extremely enriched the way in which people interact
with their devices. Even in the rather conservative market
of industrial applications, novel interaction technologies
are gaining in importance, e.g. to simplify quality
assurance of manufacturing processes in the car industry
or to improve the efficiency of warehouse logistics.

In addition, a novel concept known as “App” and
optimized for these unique technological features has
been introduced which has revolutionised the conceptual
design, look-and-feel and handiness of graphical user
applications.

Hardware commissioning and maintenance use cases
might profit from such novel interaction capabilities
(modalities). For instance the alignment of mirrors
mounted on an optical table to adjust a laser beam spot
often requires a “third hand”. Interacting with control
applications via spoken commands could be an
appropriate alternative. Likewise wearing rough and dirty
working gloves during cooling water maintenance work is
not adequate for touch sensitive devices. Interacting via
hand or arm gestures might be a better choice. Accessing
on-line documentation is often indispensable for efficient
inspection work. Wearing see-through augmented reality
glasses controlled by head movements displaying routing
schemes alongside with control applications could
substantially improve measurement operations in the
field.

Even control room work provides use cases for novel
interaction modalities. Remote-controlling an overhead
mounted screen showing some overview or control

application panels might be considerably simplified by
recognizing spatial gestures such as clenching a fist or
snapping fingers. Beam steering requires uninterrupted
eye contact with trend charts or other display updates.
Controlling a virtual knob by recognizing hand rotation
could eliminate the risk of losing device focus which
often happens with mouse-based operations.

Today’s youth are more than familiar with these novel
interaction capabilities and app-like user applications.
Providing up-to-date tools for future control room
operators and maintenance technicians appears to be a
must.

A PARADIGM CHANGE
Today’s users of accelerator control applications have

developed intuitions based on click-like interactions. In
an accelerator control room the mouse is still the standard
user input device to interact with graphical applications.
Being well accepted by the operators it provides a very
accurate pointing capability and standardized user actions
normally associated with graphical widgets. Mouse-based
interactions are highly reliable unambiguous single-user
actions. They are best suited for complex applications
containing a wealth of graphical widgets.

Thus the introduction of any new interaction
capabilities will be accompanied by a serious paradigm
change regarding how software programmers design
graphical operations and maintenance applications and
how operators or maintenance personnel interact with
them.

Gesture-Based Interaction
Spatial hand- and arm gestures provide only a rough

pointing capability, and experience shows that the user’s
arm tends to fatigue quickly, a phenomenon known as
“gorilla arm”. In addition head gestures such as turning or
nodding might also be considered.

In practice only a very limited number of gesture types
are available which are partially standardized and not a
priori associated with graphical widgets. Consequently
the design and look-and-feel of applications must
accommodate these restrictions. A multi-page application
design consistent with the app concept, where each page
provides a well-confined and standardized functionality
with an unambiguous gesture-to-action mapping, appears
to be best suited.

In general hand- and arm gestures are less reliable and
require a specific arming / disarming procedure to prevent
the user from unwanted interaction.

Spatial gestures are not limited to single-user
interaction only. It depends on the technology of the
gesture recognition device used how many gestures from
different persons can be tracked individually. Devices
with embedded infrared stereo cameras, multi-axis gyro

WEUIPLIO01 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
16Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

User Interface and Tools

sensors or muscle activity sensors are commercially
available.

Speech-Based Interaction
In contrast to other interaction modalities the

recognition of spoken commands does not provide any
pointing capability at all.

On the one hand the huge word pool of human
languages is a clear plus factor. On the other hand the
context-dependent ambiguity and the language- or
dialect-dependence of the vocabulary pose a big challenge
for the recognition algorithms involved.

From the audio technical point of view the recognition
of spoken commands might suffer from ambient noise
and the interference of multi-user inputs.

To achieve a reliable speech recognition ability limiting
the allowed vocabulary and ensuring an unambiguous
word-to-action mapping is preferable. Similar to gesture
recognition a specific arming / disarming procedure is
capable to prevent the user from unwanted interaction.

A PRACTICAL EXAMPLE
This paper reports ongoing R&D work and describes a

common single-user human-machine interface which
seamlessly combines actions based on various modalities
provided by input devices commonly available from the
consumer market. It presents and discusses a platform-
neutral Web-based interface implementation (Web2cHMI
[1]) for accelerator operation and maintenance
applications in the context of the Web2cToolkit Web
service collection [2].

Web2cHMI defines a set of common user interactions
comprising all actions needed to control Web2cToolkit-
compliant Web applications such as application browsing,
display zooming or executing commands associated with
interactive graphical widgets. In general it can be
considered as a prototype implementation exploring the
advantages and disadvantages of these novel interaction
modalities for accelerator control and maintenance
applications.

In particular the Web2cToGo Web service [3]
implements Web2cHMI and provides a test environment
for identifying intuitive and handy user actions as well as
investigating the proper structure, design and operability
of multi-modal accelerator operation and maintenance
applications. Web2cToGo embeds both Web2cViewer and

Web2cArchiveViewer Web application which are also
members of Web2cToolkit Web service collection.

Supported Modalities
Web2cHMI supports various modalities which can be

used simultaneously including
 1D/2D flat gestures including single-finger actions

(mouse) and single- or multi-finger gestures (touch-
sensitive display)

 2D/3D spatial gestures including hand-gestures
(LEAP Motion controller (Figure 1) [4]), hand- or
arm-gestures (Myo gesture control armband (Figure
2) [5]) and 3-axis (yaw, pitch roll) head movements
(smart glasses)

 English spoken commands (Sphinx speech
recognition [6]).

The LEAP Motion controller and the Myo gesture
control armband are connected locally with their
corresponding host device (desktop, notebook or tablet
computers) through USB and Bluetooth, respectively.
Currently supported smart glasses with gyroscope-based
head tracking capability include Epson Moverio BT-200
[7] and Vuzix M100 (Figure 3) [8].

Supported Gesture Types
Web2cHMI recognizes various primitive, i.e. native or

input device-specific gestures including
 Mouse: Click, Move
 Touch-sensitive display: Tap, Move / Swipe, Pinch

(two fingers)
 LEAP Motion controller: Key-Tap, Swipe, Open-

Hand, Closed-Hand, Circle
 Myo gesture control armband: Double-Tap, Wave-

Out / Wave-In, Fingers-Spread, Fist
 Smart glass: Move-Fast / Move-Slow, Roll

In addition, enriched gestures formed by primitive
gestures followed by moves or rotations etc. are
supported.

All gesture-capable devices provide orientation data
being used to position a virtual cursor label at an
application window. Unlike mice or touch-sensitive
displays gesture recognition devices such as LEAP, Myo
or smart glasses with head tracking capability do not
allow an accurate positioning of the cursor label.

Figure 1: LEAP Motion sensor. Figure 2: Myo gesture control
armband.

Figure 3: VUZIX M100 with
gyroscope-based head tracking
capability.

Proceedings of PCaPAC2016, Campinas, Brazil WEUIPLIO01

User Interface and Tools
ISBN 978-3-95450-189-2

17 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

Figure 4: Web2cToGo / Web2cHMI user input data flow.

If applicable or required by ergonomics principles,

different gestures may be applied by right or left handed
individuals. If a gesture has been successfully recognized
the next gesture recognition is momentarily inhibited
while the cursor label is fixed to the center of the
application window to notify the user.

In addition to avoid unwanted responses to
unintentional gestures recognition ability must be armed /
disarmed explicitly by the user:

 LEAP Motion controller: Key-Tap / Key-Tap
 Myo gesture control armband: Double-Tap / Double-

Tap
 Smart glass: Clockwise-Roll - Counter-Clockwise-

Roll / Counter-Clockwise-Roll - Clockwise-Roll

Common Human-Machine-Interface
Web2cHMI analyses user actions recorded by any

modality-specific input device attached and maps the
recognized gestures, spoken commands, head movements
or even mouse clicks etc. to unambiguous commands. The
recognized commands are used to control both the
Web2cToGo framework application itself and the
embedded Web2cToolkit-compliant Web applications.
Figure 4 sketches the user input data-flow within
Web2cToGo. Besides speech recognition which is
performed by the Web2cToGo servlet (Java) at the Web
server all recognition algorithms are implemented as
client-side JavaScript modules being executed by an
HTML5-compliant Web browser. Commands dedicated to
an embedded application are redirected to the
corresponding Web application.

Web2cHMI recognizes, for instance, among other user
input the following corresponding Web2cViewer actions
to increase a set value of an attached controls device in
small steps using the slider widget (Figure 5):

 Mouse: Click “>”-button and Click “Set Value”-
button of the slider widget

 Touch-sensitive display: Tap “>”-button and Tap “Set
Value”-button of the slider widget (right or left hand)

 LEAP Motion Controller: Clockwise Circle (right or
left hand)

 Myo gesture control armband: Fist & Clockwise
Rotation (right or left arm)

 Gyro Sensor: Upward Left-Tilted Move-Slow
 Speech Recognition: “More”

Similarly, in order to choose an item above the
currently chosen item in a list box of the
Web2cArchiveViewer application the following actions
can be performed (Figure 6):

 Mouse: Click on item in list box
 Touch-sensitive display: Tap on item in list box

(right or left hand)
 LEAP Motion Controller: Upward Long Swipe (right

or left hand)
 Myo gesture control armband: Wave-Out & Upward

Move (right or left arm)
 Gyro Sensor: Upward Move-Slow
 Speech Recognition: “Browse Up”

A compilation of all commands implemented by
Web2cHMI is given in the Appendix.

WEUIPLIO01 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
18Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

User Interface and Tools

Figure 5: Web2cViewer embedded in Web2cToGo application (Operation View).

Similarly, in order to choose an item above the
currently chosen item in a list box of the
Web2cArchiveViewer application the following actions
can be performed (Figure 6):

 Mouse: Click on item in list box
 Touch-sensitive display: Tap on item in list box

(right or left hand)
 LEAP Motion Controller: Upward Long Swipe (right

or left hand)
 Myo gesture control armband: Wave-Out & Upward

Move (right or left arm)
 Gyro Sensor: Upward Move-Slow
 Speech Recognition: “Browse Up”

A compilation of all commands implemented by
Web2cHMI is given in the Appendix.

Standardized Multi-Page Application Design
Due to the limited number of available gestures

embedded accelerator controls and maintenance
applications have to be split into individual pages which

provide well-known, standardized functionality in order
to preserve an unambiguous gesture-to-command
mapping.

Following this concept each Web2cViewer application
page might contain a single widget instance of each of the
following interactive widget types (Figure 5). According
to their type, the interactive widgets are capable of
performing a specific, predefined user action such as
opening a vacuum valve or changing a set value of a
power supply:

 On-type Button (user action = “On”)
 Off-type Button (user action = “Off”)
 Slider (user action = “Set Value”)
 Chart (user action = “Zoom Data”)

In addition a page might contain an unlimited number
of passive Web2cViewer widgets such as labels or value
fields.

Similarly, sets of interactive widgets have been defined
for Web2cArchiveViewer application pages.

Figure 6: Web2cArchiveViewer embedded in Web2cToGo application (Operation View).

Proceedings of PCaPAC2016, Campinas, Brazil WEUIPLIO01

User Interface and Tools
ISBN 978-3-95450-189-2

19 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs

Figure 7: Web2cToGo (Explorer View).

Figure 8: Web2cToGo (Navigation View).

OPEN ISSUES
The work described in this paper is still an R&D

project. It is inspired and abetted by a growing number of
consumer and industrial use cases. It is expected that the
acceptance level of modern user interaction technologies
will steadily increase in the future.

To compete successfully with standard mouse-based
interactions the quality and reliability of gesture and
speech recognition procedures has to be improved. The
applicability for accelerator controls and maintenance has
to be studied in detail. The most intuitive, most common
and best matching sets of gestures and spoken commands
have to be defined and the usefulness and potential
predominance of this approach have to be explored and
proved in real field tests.

In addition, it is an open issue how a future control
room preserving the unambiguity of operator’s
interactions might look. Will it be a camera supervised
collective multi-user attentive environment or rather an
environment for operators wearing individual single-user
augmented reality glasses?

Finally, the next steps to introduce these novel
interaction technologies for accelerator operations and
maintenance have to be discussed. Is an intermediate step
preferable providing, for instance, user applications
adapted for touch pads or interactive tables yet keeping
the traditional application look-and-feel? Or should a
larger step be taken, where mouse-click interactions are
omitted entirely, thereby skipping the familiar mouse-
centric application design pattern?

APPENDIX
Implemented Web2cHMI commands include:
 Web2cToGo (Explorer View): launch / display

selected application, select application icon above
below / right / left (Figure 7)

 Web2cToGo (Navigation View): switch to operation
view, switch to explorer view, browse to previous /
next application, browse to previous / next
application page, close current application, zoom in /
zoom out current application page, fit current
application page to window size, scroll down / scroll
up / scroll right / scroll left current application page
(Figure 8)

 Web2cToGo (Operation View): Switch to navigation
view (Figure 5)

 Web2cViewer: activate on-button / off-button,
change set-value (any value / small positive step /
small negative step, big positive step, big negative
step), zoom in chart (left data area / center data area /
right data area), reset chart zoom,

 Web2cArchiveViewer (Single Entry / Composite
Entry Data Selector): choose channel above / below
chosen channel, select chosen channel, clear all
entries in list of selected channels (Figure 6)

 Web2cArchiveViewer (Date and Time Span
Selector): choose next / previous month of year,
select day, select day above / below / right of / left of
selected day, select time span above / below selected
time span, select default time span

 Web2cArchiveViewer (Single Data Chart): retrieve
data, retrieve data from next / previous time interval,
zoom in chart (left data area / center data area / right
data area), reset chart zoom

 Web2cArchiveViewer (Multiple Data Chart): retrieve
data, retrieve data from next / previous time interval,
zoom in chart (left data area / center data area / right
data area), reset chart zoom, scroll down / scroll up
visible pane

 Web2cArchiveViewer (Data Table): retrieve data,
retrieve data from next / previous time interval

REFERENCES
[1] R. Bacher, “A Multi-Modal Human-Machine-Interface for

Accelerator Operation and Maintenance Applications”, in
Proc. ICALEPCS’15, Melbourne, Australia, Oct. 2015,
paper WEM308, pp 677.

[2] Web2cToolkit, http://web2ctoolkit.desy.de
[3] R. Bacher, “Web2cToGo: Bringing the Web2cToolkit to

Mobile Devices”, in Proc. PCaPAC’12, Kolkata, India,
Dec. 2012, paper WEIC01, pp. 4.

[4] LEAP, https://www.LEAPmotion.com
[5] Myo, https://www.myo.com
[6] Sphinx-4, http://cmusphinx.sourceforge.net/sphi

nx
[7] Epson Moverio BT-200, https://www.vuzix.com
[8] Vuzix M100, https://www.epson.com

WEUIPLIO01 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
20Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

User Interface and Tools

