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Abstract
A virtual accelerator is being developed for Sirius, the

new 4th generation synchrotron light source being built in

Campinas, Brazil [1]. The virtual accelerator is an on-line

beam simulator which is integrated into EPICS control sys-

tem. It consists of a command line interface server with a

channel access (CA) layer and with an in-house developed

tracking code library written in C++ for efficiency gain. The

purpose of such server is to facilitate early development and

testing of high level applications for the control system.

INTRODUCTION
Sirius, the new storage ring at the Brazilian Synchrotron

Light Laboratory (LNLS), will use EPICS as its control sys-

tem. Most of the development of the high level applications

(HLAs) will take place next year and will be conducted by

the accelerator physics group. In the meanwhile, a few client

applications have already been implemented to allow analy-

sis of the choices in software development frameworks [2]

that were made.

To be able to test and integrate the above-mentioned HLAs

in the control system (CS), it was decided that a virtual

accelerator (VA) with channel access server layer (CAS)

for EPICS should be developed, implemented and made

available as soon as possible. The idea is that having a VA

allows for early development of control system software, be

it for input-output controllers (IOCs) or HLAs.

The VA implements functionalities that can provide simu-

lated process variables (PVs) on the CS that have not been

made available yet, thus creating a mock-up CS environment

in which early software development is possible. This test en-

vironment with VA also has the potential to speed up project

development by partially parallelising implementations of

applications that consume data from each other.

Commissioning training is also possible using HLAs in

the control system provided with the virtual accelerator.

VIRTUAL ACCELERATOR
From the onset it was decided that the virtual accelera-

tor would be composed of two parts: the first, a back-end

machine application implementing a simulated virtual ac-

celerator with a channel access server layer (VACA) and the

second, a set of front-end virtual IOCs (vIOCS) with which

other CS applications are supposed to interact.

Accelerator properties such as beam current and position,

injection losses, power supply and RF subsystem setpoints,

and so on, are simulated nominally in VACA. The virtual

IOCS, on the other hand, encapsulate all PVs that represent

the interface between the VA and the rest of the CS. They
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also add simulated fluctuations to accelerator properties and

implement device-dependent parameters, such as excitation

curves of the magnets or BPM calibration parameters.

The advantage of this approach is that virtual IOCs can be

gradually replaced by their corresponding real IOCs when

they become available, and without having to modify core

simulation code, since it is implemented separately in VACA.

Figure 1: Screen printout of a command line terminal show-

ing a running instance of VACAwith the display of its banner

and useful information.

VACA
The virtual accelerator with channel access is written in

Python3. The choice of a high level programming language

allows for rapid development of the intricate functionali-

ties the virtual accelerator has to provide. Python language

works as a binding layer between the two main core mod-

ules: the CA server and the tracking simulation code. The

Python package PCASPy [3] is used to write the CA server

module. PVs implemented in VACA have a prefix "VA-"

indicating that they represent virtual process variables. For

the simulation module, a library called trackcpp [4], that has

been developed at LNLS by the accelerator physics group

staff, was reused. It is a C++ library of beam dynamics cal-

culations and tracking routines closely based on, and tested

against, Tracy [5] and Matlab AT [6] passmethods. This

library is converted to a python package using Swig3.0 [7],

thus conveying fast and optimised routines that can be con-

veniently called within Python.
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Figure 1 is a screen print of a command line terminal

showing a running instance of VACA with its banner and

useful information printout. It shows the number of vir-

tual PVs implemented for each major accelerator subsystem,

labeled here SI,BO,LI,TB,TS. Also displayed are current

model versions for all subsystems, as well as messages in-

dicating that initial calculations are finished, such as those

needed to simulate injection efficiency, for example. At last

in the display, a message indicating that VACA is ready to

respond to virtual PV queries.

VIOCS
The other part of the virtual accelerator is the set of virtual

IOCs that respond to PVs with actual the control system

names. So far a few vIOCS have been implemented:

• si_bpm, bo_bpm, ts_bpm, tb_bpm: they serve BPM
positions for all subsystems that are read from VACA,

adding emulated measurement fluctuations.

• si_current, bo_current: they provide simulated
beam currents with fluctuations. Touschek, elastic and

inelastic simulated lifetimes are affected by variations

of associated parameters such as RF gap voltage and

reduced acceptance due to closed orbit variations.

• si_ps,bo_ps,ts_ps,tb_ps: provide read/write ac-
cess to PVs that correspond to power supplies with

associated magnet excitation curves.

• si_rf,bo_rf: implement radio frequency process vari-
ables.

• si_tune: emulation of the tune measurement IOC.

• si_beamsize, bo_beamsize: emulation of beam
size measurement IOC.

• si_lifetime: emulation of lifetime calculation IOC.

Most of these vIOCS are written using database records

that are distributed with EPICS base. si_lifetime, on the
other hand, is implemented with PCASPy.

CONCLUSIONS
The virtual accelerator described here has been an invalu-

able asset for the development of high level applications, as

described in Ref. [2]. The core of the HLA development

is planned to take place in 2017, mainly by the accelerator

physics group staff. This development will certainly benefit

from having a VA system available. At this point simula-

tion of basic beam processes are implemented. VACA now

properly simulates processes such as: parameter-dependent

current decays, closed-orbit control with dipolar correctors,

beam optics variations with quadrupoles, injection and ejec-

tion that depend on magnet and timing configurations. In

the future more functionalities and modifications should be

added to VA, such as:

• Timing details of the pulsed signals during injection

and ejection processes need be considered.

• Approximate coupling expressions now used for beam

size estimates should be replaced with more rigorous

Ohmi’s beam envelop formalism [8] in trackcpp,

• A cleaner separation between VACA and vIOCS is

in order. At this points a few excitation curves are

implemented in VACA since it has not been decided

yet where they will finally be located in the CS. They

can either be stored in the corresponding power supply

IOCs – in which case they should be moved to the

vIOCS for the VA, or stored in some configuration

database service.

• Considerations on moving from EPICS database

records PCASPy for vIOCS developments. This may

simplify the process of writing and deploying applica-

tions.

• Recently a few DISCS [9] services have been adopted.

In particular, the use of its naming service module

allowed for a standardisation of how devices and PVs

are named. As a consequence, a major revision of PV

names has taken place recently. VA should be updated

to contemplate the new PV naming standard.
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