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Abstract 

In this paper we address the importance and benefits of 
trial and error in control system evolution. Here we refer 
to the control systems of particle accelerators and large 
machines, whose control systems, although complex, will 
not lead to catastrophe in case of failure.  We likewise 
focus on the evolution of control system software, 
although the issues under discussion will apply to and are 
often driven by control system hardware.  We shall 
contrast classical Darwinian evolution via natural 
selection with control system evolution, which proceeds 
rather via artificial selection, although there are numerous 
software memes which tend to replicate according to their 
'fitness'. The importance of general trial and error, i.e. 
making mistakes and learning from them, in advancing 
the capabilities of a control system will be explored, 
particularly as concerns decision making and overcoming 
Einstellung. 

INTRODUCTION 
A mature accelerator control system will be able to 

address a wide variety of problems which might arise 
throughout the controlled facility’s natural lifecycle.  
Solving new problems or a push to provide better 
solutions to old problems will generally lead to control 
system evolution, even if this amounts to little more than 
keeping up with industrial or commercial components.  
The way one goes about problem solving will in turn have 
a marked influence on the pace of this evolution.  We will 
discuss many of these aspects below, finishing with a few 
concrete examples of control system evolution at play. 

GOALS AND PROBLEM SOLVING 
The God Complex and Einstellung 

When we are well-versed in our control system and at 
the same time faced with a new problem or challenge we 
are apt to fall prey to the God Complex, i.e. that “no 
matter how complicated the problem, you believe that 
your solution is correct.” [1, 2] This is furthermore often 
compounded by what psychologists refer to as the 
Einstellung effect, or the “predisposition to solve a given 
problem in a specific manner even though better or more 
appropriate methods of solving the problem exist”. [3,4] 

The danger is not that our problem won’t get solved.  It 
most likely will. The danger is that we might not only 
miss an opportunity to explore new ideas, we might also 
end up wasting resources, and/or missing the big picture 
entirely due to our rush to implement a known solution.    

Priming and Anchoring 
Indeed our choices in problem solving and decision 

making are often due to an implicit memory effect known 
as priming [5], where exposure or familiarity with one 
stimulus (or solution paradigm) can influence our 
response to another.  The classic trivial example: “How 
many animals did Moses take on the ark?” (answer: 0) 
might appear to have little to do with our decision making 
until we realize that our expectations can be easily 
primed, a case of priming known as anchoring [5].  For 
example, imposing an artificial deadline of one week to 
try some solution automatically suggests a level of 
difficulty.  Worse, refusing to consider a new solution 
because “everyone else does it differently” suggests a 
knowledgeable rejection of the new solution.  Unfounded 
expressions such as “one week” or “everyone else” often 
serve only to anchor our expectations at some level. 

Accumulated Advantage 
The previous example of anchoring (“everyone else 

does it differently”) is also an example of the effect of 
accumulated advantage, often referred to as the Matthew 
Effect, (from Matthew 25:29 in the King James version of 
the Bible) [6].  In point of fact, our opinions are strongly 
related to and often dependent on those of others.  The 
crowded restaurant must serve better food than the empty 
one next door!  In an experiment by Duncan Watts [6], 
two sets of college students could download garage band 
music from two web sites.  The sites were identical except 
that in one case the students could see the likes and 
downloads of everyone else.  It’s not surprising that in 
one case there were a handful of hit songs and in the other 
the likes and downloads showed a flat distribution. 

Trial and Error 
We should in any case be aware of the aforementioned 

challenges to our problem solving abilities.  Whether we 
admit that we already know the solution to a new problem 
or not, the practice of trial-and-error cannot be avoided.  
The basic algorithm of trial-and-error can be described as: 

 
1) Define what constitutes a solution to our problem.  
2) Try something.  
3) Check to see if the problem is solved. If not:  
4) Modify something into a more promising direction 

and repeat step 3). Or, if the problem is solved:  
5) Quit. 
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The psychological effects we have just discussed will 
of course influence the something that we initially try in 
step 2).  In fact, if there is any kind of time pressure the 
best bet is indeed to go with our best over-all hunch.  If 
on the other hand there is a time-window for bold 
experimentation, trying several somethings might lead to 
remarkable improvements. 

EVOLUTION 
Evolution, Darwinian or otherwise, naturally progresses 

via trial-and-error.  The incremental evolutionary steps 
might occur by chance, as in the case of the natural world, 
or by design as in the case of control system evolution.  
Either way, the measure of success is the ability to 
replicate.  Thus there is an implicit drive to improve.  

Darwinian Evolution 
In Darwinian evolution [7] the replicating unit is the 

gene. Any mutation which leads to a greater chance of 
survival will in turn lead to an organism’s genetic 
material replicating itself more often, which is what we 
mean by improvement.  Evolution by natural selection is 
of course slow and has a direction.  That this occurs by 
chance means that evolutionary changes cannot be 
reengineered in order to improve performance.  Any 
improvement comes entirely by trial-and-error. 

An oft cited proof of intelligent design by creationists is 
the eye, which is so complex that it couldn’t possibly 
have happened by chance and must have had a designer.  
A billion years, though, is ample time for cells initially 
able to only distinguish dark from light to successively 
evolve into such a remarkable organ.  More to the point, 
the design is actually rather clumsy, as recognized already 
in the 19th century by Hermann von Helmholtz.  No 
engineer would route the wiring leading from a camera’s 
photo cells back into the path of the light source and then 
bundle it all into a thick cable near the center of the 
collecting surface, thereby creating a blind spot! 

There is no chance to reengineer this into a more 
sensible solution.  Nor is there any chance that a random 
mutation will fix the design flaws. 

It is nonetheless instructive to recognize how incredibly 
well the eye does work (in tandem with our visual cortex).  
The design flaws are practically irrelevant, a point which 
should be remembered when the temptation to refactor 
complicated, yet well-working, software arises. 

Software Evolution 
Software evolution is driven by design decisions from 

the very beginning.  Although survival might still be of 
the fittest, the agent of change is artificial- rather than 
natural-selection, and the replicating unit will be the 
meme, the smallest idea that gets transferred within a 
culture [8] (e.g. the idea of sockets or threads, but not 
necessarily the implementation of them). 

Manny Lehman identified three categories of software, 
S- (specific) programs, P- (procedural) programs, and E- 
(evolutionary) programs [9].  S-programs are written once 
for a specific purpose.  P-programs implement a set of 

procedures only (e.g. play chess).  E-programs perform 
some real-world activity and adapt to the environment 
and circumstances in which they run.  

As much as we might wish particle accelerator control 
systems to be P-programs, they are in fact E-programs 
and necessarily evolve.  In fact, as the environment in 
which a control system operates does indeed evolve, one 
of Lehman’s Laws [9] asserts that the quality of the 
control system will decline unless it also evolves.  

Here, however, we do have and often utilize the ability 
to refactor bad or clumsy design decisions.  Of course, the 
question remains as to what a bad design is and (like the 
eye) as to whether it is in the end worth the risk of 
changing a (well-running and complex) running system 
merely for the sake of improving the design. 

Complex software might also contain vestige routines 
(analogous to the appendix) which have no practical 
purpose but continue to be accessed by vintage 
application programs and are therefore required to exist. 
Thus, API breaks in reusable software such as control 
system libraries should be avoided when possible, 
including the disposal of deprecated API routines or class 
methods, unless the consequences of doing so are 
understood beforehand.   

In addition to keeping pace with an evolving hardware 
environment, control system software will evolve on its 
own accord in order to improve or introduce functionality. 
The pace of evolution here will be strongly dependent on 
the developer’s susceptibility to the psychological effects 
mentioned in the previous section.   

Regardless of pace, any real evolutionary change will 
occur via trial-and-error. Typically, coding modifications 
will be run through various unit tests (a tight trial-and-
error loop) until there is a new release candidate.  The 
next trial might occur in the field when the software is 
deployed.  After deployment, however, the cost of error 
will be much higher.  In the case of accelerator control 
there is fortunately little or no chance of catastrophic error 
(as there is in airplanes or nuclear power).  Nonetheless 
an error can lead to downtime or damage to equipment.  
Thus the cost of error should be examined along with 
rollback strategies prior to any new deployment.   

EXAMPLES 
Control System Protocol 

One of the problems we sometimes have to deal with is 
an unacceptably high load (CPU and/or network) on a 
control system server.  If this load is primarily due to 
information transfer from server to client then we have an 
issue with the control system protocol.   

The TINE [10] control system makes use of the device 
server paradigm, where a server exposes control system 
elements as instances of devices and offers access to their 
attributes and actions through properties.  It also offers 
publish-subscribe data acquisition, which in itself goes a 
long way in reducing unnecessary load on a server due to 
data transfer to multiple clients. However if client 
applications obtain data via repetitive non-persistent 
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transactions (polling) then there is no load reduction from 
publish-subscribe.  The situation can be compounded 
many-fold if a server with many device instances (e.g. a 
vacuum pump, beam position monitor, or power supply 
controller - PSC) is requested to deliver information from 
all elements one-at-a-time.  And precisely this is an all too 
common occurrence with simple client panel applications. 

When faced with this situation in 2009 with multiple 
ddd [11] clients accessing the FLASH PSCs we decided 
to eschew the traditional split-the-load-among-multiple-
servers approach and add a new feature to the control 
system protocol called contract coercion [12].  

As the PSC server is not only prepared to, but prefers to 
send property information for all PSC instances for a 
given property as a multi-channel array, we addressed the 
question “Can we coerce a client’s synchronous request 
for the value of a property into a monitor for all values of 
that property?”  We answered yes and then introduced 
contract coercion.  The initial results were more than 
encouraging as the load on the server was effectively 
decimated without modifying a single line of client code. 

To be sure, there was a significant amount of tight-loop 
trial-and-error with unit tests, etc. prior to deployment, 
but we were nevertheless aware of the costs of unforeseen 
errors beforehand.  We assumed, based on prior testing, 
that the likelihood of a serious error on most clients was 
extremely small.  If an exotic client did have an error we 
based the decision to rollback or not on how critical to 
operations the exotic client was and whether the error 
appeared immediately or some significant time later. 

In the end, no rollbacks were ever necessary.  Several 
errors were nonetheless encountered and repaired in the 
months following initial deployment. Likewise, the 
ensuing years saw several quality-of-service additions to 
the initial contract coercion implementation, each with its 
own trial-and-error process.  

Control System Services 
The TINE control system offers many central services, 

among them a plug-and-play system concerning name 
resolution.   

The TINE Equipment Name Server (ENS) maintains a 
device server database and provides address information 
when a client needs to contact a control system element.  
The ENS database can of course be modified by an 
administrator, but in general it is updated automatically.  
The plug-and-play mechanism will add a new server to 
the database or update a server’s meta-information with 
every server start. 

This level of automation requires a good deal of trial-
and-error whenever new features are added. The ENS 
must not only guarantee a unique entry for a control 
system server it must also inform any server trying to 
usurp an existing name that its request was denied. The 
requested names and meta- information of any new server 
must also be validated, etc.   

When we make modifications here, however we are 
modifying a central service rather than the control system 
protocol itself.  What are the costs of error in this case? 

The ENS would appear to offer a critical service, in 
contrast to, say, central archive or alarm servers.  In fact it 
is semi-critical.  All clients already have a fallback 
mechanism (using the last locally cached address in the 
event of address resolution failure) when the ENS is not 
operational. The worst that can happen is either 1) a new 
server will not be able to plug itself into the system, or 2) 
an existing server starting on a new host will not be able 
to modify its address information. 

The other TINE central services are even less critical in 
that operations are never threatened in the event of error.  

Applications 
A good example of a specific application with on-going 

trial-and-error is the Operation History Viewer in TINE 
Studio [13, 14].  This application shows the machine state 
information (including problems) over any selected time 
range. The problems state indicates non-availability of the 
machine and can be divided into sub-systems, where one 
has the ability to browse through the fatal alarms 
responsible for the downtime.  The goal is to have a fully 
automatic calculation of operation and availability history.  
As blame for non-availability is assigned to fatal alarms, 
we see that the application consists of more than a mere 
presentation of data, and involves, among other services, 
the central alarm system in a vital way. We may not break 
free from the trial-and-error loop here for some time to 
come and have added the ability to post-correct both the 
state information and the availability information (by a 
machine coordinator) over any time interval. 

The costs of error here, as for most applications, apply 
almost exclusively to the application itself, and will have 
no impact on operations unless the application is critical 
to operations (which this isn’t).  This is not to say that we 
can make errors with impunity.  Once an application is 
regularly used, any degradation in quality of service will 
of course result in unhappy customers.  Ensuring that the 
most-used features continue to work properly is generally 
sufficient to allow deployment of a new version.  Should 
an error be discovered, a rollback can easily be made 
while the error is dealt with.   

CONCLUSIONS 
Control system evolution will occur if for no other 

reason than the necessity of keeping pace with the 
commercial and industrial world. Real innovation in 
control system software will involve a trial-and-error 
period.  This period can be extensive or even continual, 
but primarily constitutes what is meant by control system 
evolution. Dramatic improvement most often occurs if we 
resist the psychological pressures to solve any new 
problems in a tried-and-true manner and admit that we 
perhaps don’t already know the best course of action.  
Often enough, deadlines will require us to play it safe, but 
if we have a large enough time window for development 
such that we can test several solutions to the same 
problem then we can often make great strides in the 
advancement of our control systems.  
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