
openMMC: AN OPEN SOURCE MODULAR FIRMWARE
FOR BOARDMANAGEMENT

H. A. Silva∗, G. B. M. Bruno, LNLS, Campinas, Brazil

Abstract
openMMC is an open source firmware designed for board

management in MicroTCA systems. It has a modular ar-
chitecture providing decoupling between application, board
and microcontroller-specific routines, making it useful as a
base for many different designs, even those using less pow-
erful controllers. Despite being developed in a MicroTCA
context, the firmware can be easily adapted to other hard-
ware platforms and communication protocols. The firmware
is based on the FreeRTOS operating system, over which
each monitoring function (sensors, LEDs, Payload manage-
ment, etc) runs its own independent task. The OS, despite
its reduced footprint, also provides numerous tools for reli-
able communication among the tasks, controlling the board
efficiently.

INTRODUCTION
LNLS Beam Diagnostics team is currently developing the

Sirius’ Beam Position Monitor (BPM) electronics and has
adopted the MicroTCA.4® standard by PICMG [1] in its
boards designs [2].

The main board on the electron BPM system is the AMC
FMC Carrier (AFC) [3], which is a general purpose FPGA
board that hosts up to two mezzanine cards in FMC form fac-
tor. Those smaller cards carried by AFC can be implemented
to have many different applications (e.g. fast digitizers, SFP
modules, data pre-processing modules, RS485 communica-
tion). In the BPM application, fast digitizer FMCs will be
used in order to read the BPM analog signals.
AMC boards, as the application boards are called in the

MicroTCA system, must have implemented a Module Man-
agement Controller (MMC), which usually is a microcon-
troller responsible for monitoring the board health and acting
as a communication channel between the system manager
and application using Intelligent Platform Management In-
terface (IPMI) [4].
openMMC was created to be an open source (using

GPLv3 license) modular and generic firmware, easily
portable to other platforms. It runs over FreeRTOS, which
gives the developer a wide set of tools to implement complex
monitoring functions or advanced hardware control. Given
its modular independent structure, it is possible to use the
firmware in applications outside MicroTCA environment
with little effort, changing the communication protocol in
its lower layers, for example.
The project development is being versioned in a GitHub

repository [5], using pull requests and issues tracking as its
main collaboration tools.

∗ henrique.silva@lnls.br

MOTIVATION
The development of openMMC started after some unfruit-

ful tests with the available open source MMC implementa-
tions. Those firmwares were developed to run on specific
target boards, requiring a substantial effort in order to port
them to AFC’s hardware and begin a functional evaluation
process.

After some attempts, it was clear that porting the code basi-
cally meant to rewrite it from scratch, given that its low level
driver and application functions were deeply intertwined.
The hardware flexibility offered by MicroTCA was not

being accompained by its MMC firmware architecture, since
each board implementation had to recreate the managing
firmware. openMMC was thought to be the hardware inde-
pendent firmware that could meet this need.

FreeRTOS
FreeRTOS [6] is a popular open source real time operating

system for embedded controllers that has already been ported
to a wide range of CPU architectures.

It features a preemptive scheduler that allows the applica-
tion code to run multiple tasks in parallel with a single core.
The scheduler decides which task will run based on its pri-
ority. More important tasks are always executed first, whilst
blocking the lower priority ones. If one or more tasks are
on the same priority level, a round-robin time slice method
is applied, ensuring that all of them are executed within its
time limits.

Most of OS-native tools used in communication between
tasks are also implemented on FreeRTOS (e.g. semaphores,
software timers, queues). The developer can also use some
unique functions provided, such as direct-to-task notifica-
tions, event groups and co-routines.
Except for task creation, all tools on FreeRTOS can be

stripped from its compilation, reducing resource usage, thus
enabling use of cheaper and lower-power microcontrollers.

FreeRTOS project uses a modified GPLv3 license, which
allows the user to implement its application on top of the
OS without having to publish proprietary code [7].

FIRMWARE STRUCTURE
The firmware was structured in order to be easy to up-

grade and port to different boards and controllers. Therefore
four different abstraction layers are implemented: Applica-
tion, Hardware Abstraction, Port and Driver, arranged as in
Fig. 1.

Application
The Application layer holds high-level tasks responsible

for deciding which action will be taken based on the in-

THPOPRPO04 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
94Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Hardware Technologies



Figure 1: openMMC firmware structure.

formation provided by the lower level layers. Most of the
functions implemented on this level are state-machine based,
regurlarly checking and actuating on the board status.

Hardware Abstraction
In the Hardware Abstraction Layer (HAL) lies all the

functions that interfaces with the board peripheral hardware,
making the internal calls to the IC registers transparent to
the caller for example. Since any board can benefit from
a module in this layer, they are all stored together inside
"modules" folder.
An exception in the HAL is the IPMI Protocol module,

that does not target any specific peripheral hardware. Instead,
it is responsible to manage IPMI protocol messages inter-
nally, decoding packets, asserting checksums and building
responses accordingly.
The following modules were already implemented and

tested in LNLS’ AFC board:
• IPMI Protocol
• Watchdog Timer
• SCANSTA111 JTAG Switch
• ADN4604 Clock Crossbar Switch
• AD84XX DAC
• AT24MAC EEPROM
• 24xx64 EEPROM
• Hotswap Handle
• LM75 Temperature Sensor
• MAX6642 Temperature Sensor
• INA220 Voltage and Current Sensor
• HPM Upgrade
• PCA9554 I/O Expander
• Si57X Oscillator
• UART Debug interface

Port
The Port layer serves as a connection between Driver and

the upper layers. Its purpose is tomask all functions provided
by the controller drivers so that the upper layers only call
generic functions defined in this level, as demonstrated in
Fig. 2.
This layer presents a few restrictions regarding its struc-

ture. Developers in charge of implementing new hardware

Figure 2: openMMC sensor update function call sequence.

drivers must follow the port layer functions’ signature in
order to maintain compatibility throughout the firmware.
Currently, there is only one port maintaned in mainline

openMMC,which targets LPC17 family chips. Development
of a port to ATxMega128 CPU has been initiated by GSI [8].

Drivers
The lowest layer is where the microcontroller peripheral

drivers are implemented, accessing directly the hardware to
control the outputs.

BOOTLOADER
Having a small footprint makes it possible to store more

than one image of the running firmware, easing the sys-
tem’s upgrade process. Taking advantage of this property, a
Bootloader scheme was developed in order to manage the
controller’s memory sections and reserve a portion of the
ROM to store an updated firmware. An example of the inter-
nal memory divison in a LPC1764 controller can be seen in
Fig. 3.

Figure 3: LPC1764 ROM organization with openMMC.

The new firmware is sent to the MMC broken in small
packages usingHPMupdate protocol [9], defined by PICMG.
The controller then writes page by page the new firmware
in the reserved ROM section and also adds an update flag
to the bootlader, indicating that this firmware is the more
recent version and should be moved to the proper section in
order to be executed.

Proceedings of PCaPAC2016, Campinas, Brazil THPOPRPO04

Hardware Technologies
ISBN 978-3-95450-189-2

95 Co
py

rig
ht

©
20

17
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs



The bootlader is always executed first in power-up se-
quence, checking whether there is a new firmware to write
into execution section. If not, it just moves the program
execution flow to the starting point of the user code area.

BUILD AUTOMATION
CMake is a software designed to automate build systems

[10], widely used in projects where the compilation chain
has more than one build target and needs to manipulate
multiple sources. It implements its own scripting language
that allows the user to fully customize each build without
having to worry about sources dependencies.

Using this tool with openMMC allows developers to fit the
firmware to the board hardware just by adding new modules
in the compilation list present on each board port folder. The
user is also able to set new compilation flags or link new
libraries almost effortless.

BOARD PORTING
openMMC also allows the user to easily port the firmware

to a different board with other peripheral hardware configu-
ration while keeping the target controller.
Since all peripheral hardware drivers are implemented

as modules in the Hardware Abstraction Layer, only the
CMakeLists.txt file inside the board folder have to be
changed. In this file, all modules needed in each hard-
ware configuration are selected based on a list parameter.
When CMake is called to generate the automatic Makefiles,
it parses this argument and includes all selected modules
sources and dependecies in the compilation chain.

CODE SIZE
openMMC has a small memory footprint, which makes it

perfect for embedded environments that traditionally have
limited resources. Table 1 presents openMMC’s average
RAM usage and code size in ROM after compiling in both
minimal and standard configurations for AFC BPM board,
using GCC’s optimization flag -Os.

Table 1: openMMC Resources Usage

Configuration RAM [kB] ROM [kB]
Minimal 5.54 20.91
Standard 8.07 29.69

CONTINUOUS INTEGRATION
Every modification in the application layer must be tested

across all boards and controllers ports to assert that the
firmware remains compatible.

Validating that the firmware compiles with every variant
option becomes very difficult as the ports count increases.
Using a Continuous Integration tool allows the maintainer to
run dedicated tests after each commit on the main repository
and automatically reports if the lattest change has made any
port unusable. Travis C.I. [11] uses a simple script written in
its own language to install the needed toolchains. Tracking

the latest commits on the repository branches, allows it to
perform build tests on them, ensuring that the latest modifi-
cation is compatible with all board and controller ports.

DOCUMENTATION
The firmware documentation is written using Doxygen

style [12]. This way, the documentation format is completely
automated and can have many different output formats such
as HTML, LATEX, XML, RTF, etc.

By hosting the firmware code in GitHub repository, one is
able to use a feature called GitHub Pages, in which a small
website for generic use can be hosted simply by adding a new
branch named gh-pages in the main repository. openMMC
documentation has been uploaded to GitHub pages, but it is
still under development [13].
Using this tool simplifies code documentation update,

since it just needs to be regenerated by Doxygen after each
change and pulled to its respective GitHub Pages branch.

ACKNOWLEDGMENTS
The authors would like to thank K. Macias from Creotech

Instruments SA for the extensive firmware debug and P.
Miedzik from GSI for the initial discussions in the firmware
structure definition and by suggesting FreeRTOS as a base
for the project.

REFERENCES
[1] PICMG MicroTCA Specification, https://www.picmg.

org/openstandards/microtca

[2] D. O. Tavares et al., “Development of an Open-Source Hard-
ware Platform for Sirius BPM and Orbit Feedback”, in Proc.
ICALEPCS’13, San Francisco, October 2013, p. 1039, 2013.

[3] AMC FMC Carrier Project, http://www.ohwr.org/
projects/afc

[4] Inteligent Platform Management Interface, http:
//www.intel.com/content/www/us/en/servers/
ipmi/ipmi-home.html

[5] openMMC GitHub Repository, https://github.com/
lnls-dig/openMMC/

[6] FreeRTOS Project Page, http://www.freertos.org/

[7] FreeRTOS modified GPLv3 license, http://www.
freertos.org/license.txt

[8] GSI MMC implementation repository, https://github.
com/qermit/JAMMCI/

[9] Hardware Platform Management Overview,
https://www.picmg.org/openstandards/
hardware-platform-management/

[10] CMake Project, https://cmake.org/

[11] Travis Countinous Integration tool, https://travis-ci.
org/

[12] Doxygen Project, http://www.stack.nl/~dimitri/
doxygen/

[13] openMMC Documentation at GitHub Pages, http://
lnls-dig.github.io/openMMC/

THPOPRPO04 Proceedings of PCaPAC2016, Campinas, Brazil

ISBN 978-3-95450-189-2
96Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Hardware Technologies


